Построение сечения пирамиды по 3 точкам. Построение натурального вида фигуры сечения пирамиды плоскостью

Правильная шестиугольная пирамида, пересе­ченная фронтально-проецирующей плоскостью Р, показана на рис. 180.

Как и в предыдущих примерах, фронтальная проекция сечения совпадает с фронтальным сле-


дом P v плоскости. Горизонтальную и профильную проекции фигуры сечения строят по точкам, кото­рые являются точками пересечения плоскости Р с ребрами пирамиды.

Действительный вид фигуры сечения в этом примере определяется способом совмещения.

Развертка боковой поверхности усеченной пи­рамиды с фигурой сечения и фигурой основания приведена на рис. 180, б.

Сначала строят развертку неусеченной пирами­ды, все грани которой, имеющие форму треуголь­ника, одинаковы. На плоскости намечают точку s l (вершину пирамиды) и из нее, как из центра, проводят дугу окружности радиусом R, равным действительной длине бокового ребра пирамиды. Действительную длину ребра можно определить по профильной проекции пирамиды, например отрезки s"e" или s"b", так как эти ребра парал­лельны плоскости W и изображаются на ней дей­ствительной длиной. Далее по дуге окружности от любой точки, например а 1 , откладывают шесть одинаковых отрезков, равных действительной длине стороны шестиугольника – основания пира­миды. Действительную длину стороны основания пирамиды получаем на горизонтальной проекции (отрезок ab). Точки a 1 ...f 1 соединяют прямыми с вершиной s 1 . Затем от вершины a 1 на этих пря­мых откладывают действительные длины отрезков ребер до секущей плоскости.

На профильной проекции усеченной пирамиды имеются действительные длины только двух от-

резкое – s"5 и s"2. Действительные длины ос­тальных отрезков определяют способом вращения их вокруг оси, перпендикулярной к плоскости Н и проходящей через вершину s. Например, повер­нув отрезок s"6" около оси до положения, парал­лельного плоскости W, получим на этой плоскости его действительную длину. Для этого достаточно через точку 6" провести горизонтальную прямую до пересечения с действительной длиной ребра SE или SB. Отрезок s"6 0 ″ (см. рис. 180).

Полученные точки 1 1 2 1 , 3 1 , и т.д. соединяют прямыми и пристраивают фигуры основания и сечения, пользуясь методом триангуляции. Линии сгиба на развертке проводят штрихпунктирной линией с двумя точками.

Построение изометрической проекции усечен­ной пирамиды начинают с построения изометри­ческой проекции основания пирамиды по разме­рам, взятым с горизонтальной проекции комплек­сного чертежа. Затем на плоскости основания по координатам точек 1...6 строят горизонтальную проекцию сечения (см. тонкие синие линии на рис. 180, а, в). Из вершин полученного шести­угольника проводят вертикальные прямые, на которых откладывают координаты, взятые с фрон­тальной или профильной проекций призмы, на­пример, отрезки К { , К 2 , К 3 и т.д. Полученные точки 1...6 соединяем, получаем фигуру сечения. Соединив точки 1...6 с вершинами шестиугольни­ка, основания пирамиды, получим изометричес­кую проекцию усеченной пирамиды. Невидимые ребра изображают штриховыми линиями.



Пример сечения треугольной неправильной пирамиды фронтально-проецирующей плоскостью показан на рис. 181.

Все ребра на трех плоскостях проекций изобра­жены с искажением. Горизонтальная проекция


основания представляет собой его действительный вид, так как основание пирамиды расположено на плоскости Н .

Действительный вид 1 0 , 2 0 , 3 0 фигуры сечения получен способом перемены плоскостей проекций. В данном примере горизонтальная плоскость про­екций Н заменена новой плоскостью, которая параллельна плоскости Р; новая ось х 1 совмещена со следом Р V (рис. 181, а).

Развертку поверхности пирамиды строят следующим образом. Способом вращения находят дей­ствительную длину ребер пирамиды и их отрезков от основания до секущей плоскости Р.

Например, действительные длины ребра SC иего отрезка СЗ равны соответственно длине фрон­тальной проекции s"c" ребра и отрезка c 1 ′3 1 по­сле поворота.

Затем строят развертку треугольной неправильной пирамиды (рис. 181, в). Для этого из произ­вольной точки S проводят прямую, на кот, откладывают действительную длину ребра SA. Из точки s делают засечку радиусом R 1 , равным действительной длине ребра SB, а из точки засечку радиусом R 2 , равным стороне основания пирамиды АВ, в результате чего получают точку b 1 и грань s 1 b 1 a 1 . Затем из точек s и b 1 как из центров, делают засечки радиусами, равными действительной длине ребра SC и стороне ВС получают грань s 1 b 1 с 1 пирамиды. Также строится грань s 1 с 1 a 1 .



От точек а 1 b 1 и с 1 откладывают действительные длины отрезков ребер, которые берут на фронтальной проекции (отрезки а 1 ′1 1 ′, b 1 ′2 1 ′,с 1 ′3 1 ′ ). Используя метод триангуляции, пристраивают основание и фигуру сечения.

Для построения изометрической проекции усе­ченной пирамиды (рис. 181, б) проводят изомет­рическую ось х. По координатам т и п строят основание пирамиды ABC. Сторона основания АС параллельна оси х или совпадает с осью х. Как и в предыдущем примере, строят изометрическую проекцию горизонтальной проекции фигуры сече­ния 1 2 2 2 3 2 (используя точки I, III и IV). Из этих точек проводят вертикальные прямые, на которых откладывают отрезки, взятые с фронтальной или профильной проекции призмы К 1 , К 2 и К 3 . Полу­ченные точки 1 , 2, 3 соединяют прямыми между собой и с вершинами основания.

Пирамида. Усеченная пирамида

Пирамидой называется многогранник, одна из граней которого многоугольник (основание ), а все остальные грани – треугольники с общей вершиной (боковые грани ) (рис. 15). Пирамида называется правильной , если ее основанием является правильный многоугольник и вершина пирамиды проектируется в центр основания (рис. 16). Треугольная пирамида, у которой все ребра равны, называется тетраэдром .



Боковым ребром пирамиды называется сторона боковой грани, не принадлежащая основанию Высотой пирамиды называется расстояние от ее вершины до плоскости основания. Все боковые ребра правильной пирамиды равны между собой, все боковые грани – равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из вершины, называется апофемой . Диагональным сечением называется сечение пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.

Площадью боковой поверхности пирамиды называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех боковых граней и основания.

Теоремы

1. Если в пирамиде все боковые ребра равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности описанной около основания.

2. Если в пирамиде все боковые ребра имеют равные длины, то вершина пирамиды проектируется в центр окружности описанной около основания.

3. Если в пирамиде все грани равнонаклонены к плоскости основания, то вершина пирамиды проектируется в центр окружности вписанной в основание.

Для вычисления объема произвольной пирамиды верна формула:

где V – объем;

S осн – площадь основания;

H – высота пирамиды.

Для правильной пирамиды верны формулы:

где p – периметр основания;

h а – апофема;

H – высота;

S полн

S бок

S осн – площадь основания;

V – объем правильной пирамиды.

Усеченной пирамидой называется часть пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды (рис. 17). Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и секущей плоскостью, параллельной основанию пирамиды.

Основания усеченной пирамиды – подобные многоугольники. Боковые грани – трапеции. Высотой усеченной пирамиды называется расстояние между ее основаниями. Диагональю усеченной пирамиды называется отрезок, соединяющий ее вершины, не лежащие в одной грани. Диагональным сечением называется сечение усеченной пирамиды плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани.


Для усеченной пирамиды справедливы формулы:

(4)

где S 1 , S 2 – площади верхнего и нижнего оснований;

S полн – площадь полной поверхности;

S бок – площадь боковой поверхности;

H – высота;

V – объем усеченной пирамиды.

Для правильной усеченной пирамиды верна формула:

где p 1 , p 2 – периметры оснований;

h а – апофема правильной усеченной пирамиды.

Пример 1. В правильной треугольной пирамиде двугранный угол при основании равен 60º. Найти тангенс угла наклона бокового ребра к плоскости основания.

Решение. Сделаем рисунок (рис. 18).


Пирамида правильная, значит в основании равносторонний треугольник и все боковые грани равные равнобедренные треугольники. Двугранный угол при основании – это угол наклона боковой грани пирамиды к плоскости основания. Линейным углом будет угол a между двумя перпендикулярами: и т.е. Вершина пирамиды проектируется в центре треугольника (центр описанной окружности и вписанной окружности в треугольник АВС ). Угол наклона бокового ребра (например SB ) – это угол между самим ребром и его проекцией на плоскость основания. Для ребра SB этим углом будет угол SBD . Чтобы найти тангенс необходимо знать катеты SO и OB . Пусть длина отрезка BD равна 3а . Точкой О отрезок BD делится на части: и Из находим SO : Из находим:

Ответ:

Пример 2. Найти объем правильной усеченной четырехугольной пирамиды, если диагонали ее оснований равны см и см, а высота 4 см.

Решение. Для нахождения объема усеченной пирамиды воспользуемся формулой (4). Чтобы найти площади оснований необходимо найти стороны квадратов-оснований, зная их диагонали. Стороны оснований равны соответственно 2 см и 8 см. Значит площади оснований и Подставив все данные в формулу, вычислим объем усеченной пирамиды:

Ответ: 112 см 3 .

Пример 3. Найти площадь боковой грани правильной треугольной усеченной пирамиды, стороны оснований которой равны 10 см и 4 см, а высота пирамиды 2 см.

Решение. Сделаем рисунок (рис. 19).


Боковая грань данной пирамиды является равнобокая трапеция. Для вычисления площади трапеции необходимо знать основания и высоту. Основания даны по условию, остается неизвестной только высота. Ее найдем из где А 1 Е перпендикуляр из точки А 1 на плоскость нижнего основания, A 1 D – перпендикуляр из А 1 на АС . А 1 Е = 2 см, так как это высота пирамиды. Для нахождения DE сделаем дополнительно рисунок, на котором изобразим вид сверху (рис. 20). Точка О – проекция центров верхнего и нижнего оснований. так как (см. рис. 20) и С другой стороны ОК – радиус вписанной в окружности и ОМ – радиус вписанной в окружности:

MK = DE .

По теореме Пифагора из

Площадь боковой грани:


Ответ:

Пример 4. В основании пирамиды лежит равнобокая трапеция, основания которой а и b (a > b ). Каждая боковая грань образует с плоскостью основания пирамиды угол равный j . Найти площадь полной поверхности пирамиды.

Решение. Сделаем рисунок (рис. 21). Площадь полной поверхности пирамиды SABCD равна сумме площадей и площади трапеции ABCD .

Воспользуемся утверждением, что если все грани пирамиды равнонаклонены к плоскости основания, то вершина проектируется в центр вписанной в основание окружности. Точка О – проекция вершины S на основание пирамиды. Треугольник SOD является ортогональной проекцией треугольника CSD на плоскость основания. По теореме о площади ортогональной проекции плоской фигуры получим:


Аналогично и значит Таким образом задача свелась к нахождению площади трапеции АВСD . Изобразим трапецию ABCD отдельно (рис.22). Точка О – центр вписанной в трапецию окружности.


Так как в трапецию можно вписать окружность, то или Из по теореме Пифагора имеем

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.

Треугольник MNP — искомое сечение.

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

Треугольник BKL — искомое сечение.

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

Таким образом, получили все то же сечение MNPT.

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Пирамидой называется многогранник, который состоит из плоского многоугольника -- основания пирамиды, точки, не лежащей в плоскости основания,-- вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18).

Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами.

Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань -- треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной - сторона основания пирамиды.

Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания.

Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром.

У пирамиды, изображенной на рисунке 18, основание -- многоугольник А1А2 …An, вершина пирамиды - S, боковые ребра -- SА1, S А2, …, S Аn, боковые грани - SА1А2, SА2А3, ... .

В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками.

Построение пирамиды и ее плоских сечений

В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды.

Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20).

Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани -- точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.

Для построения натуральной величины фигуры сечения (рис. 4) применен способ перемены плоскостей проекций. В качестве дополнительной плоскости принята плоскость H 1 , параллельная плоскостиР и перпендикулярная плоскостиV . Полученная проекция треугольника1 1 2 1 3 1 является натуральной величиной фигуры сечения.

Пирамида с вырезом

В качестве примера построения сечений многогранника несколькими плоскостями рассмотрим построение пирамиды с вырезом, который образован тремя плоскостями − P , R , иT (рис. 5).

Плоскость P , параллельная горизонтальной плоскости проекций, пересекает поверхность пирамиды по пятиугольнику 1-2-3-K-6 . На горизонтальной плоскости проекций стороны пятиугольника параллельны проекциям сторон основания пирамиды. Построив горизонтальную проекцию пятиугольника, отмечаем точки4 и5 .

Фронтально-проецирующая плоскостьR пересекает пирамиду по пятиугольнику 1-2-7-8-9 . Чтобы найти горизонтальные проекции точек8 и9 , проведем через них дополнительные образующиеSM иSN . Вначале на фронтальной проекции− s ′ m ′ иs ′ n ′, а затем на горизонтальной− sm иsn .

Фронтально-проецирующая плоскостьΤ пересекает пирамиду по пяти-

угольнику 5-4-8-9-10 .

Построив горизонтальную проекцию выреза, строим его профильную проекцию.

Построение проекций линии пересечения цилиндра плоскостью

При пересечении цилиндра вращения плоскостью, параллельной оси вращения, в сечении получается пара прямых (образующих, рис. 6). Если секущая плоскость перпендикулярна к оси вращения, в результате сечения получится окружность (рис. 7). В общем случае, когда секущая плоскость наклонена к оси вращения цилиндра, в сечении получается эллипс (рис. 8).

Рассмотрим пример

построения проекций линии сечения

цилиндра

фронтально-

проецирующей

стью Q . В сечении получа-

ется эллипс (рис. 9).

Фронтальная

ция линии сечения в этом

случае совпадает с фрон-

тальным следом плоскости

Qv , а горизонтальная− с

горизонтальной проекцией

поверхности

цилиндра

окружностью.

Профильная

проекция линии

строится

по двум имеющимся про-

екциям − горизонтальной и фронтальной.

В общем случае построение линии пересечения поверхности плоскостью сводится к нахождению общих точек, принадлежащих одновременно секущей плоскости и поверхности.

Для нахождения этих точек применяют метод дополнительных секущих плоскостей:

1. Проводят дополнительную плоскость;

2. Строят линии пересечения дополнительной плоскости с поверхностью и дополнительной плоскости с заданной плоскостью;

3. Определяют точки пересечения полученных линий.

Дополнительные плоскости проводят таким образом, чтобы они пересекали поверхность по наиболее простым линиям.

Нахождение точек линии пересечения начинают с определения характерных (опорных) точек. К ним относятся:

1. Верхние и нижние точки;

2. Левая и правая точки;

3. Точки границы видимости;

4. Точки, характеризующие данную линию пересечения (для эллипса − точки большой и малой осей).

Для более точного построения линии пересечения необходимо построить еще и дополнительные (промежуточные) точки.

В рассматриваемом примере точки 1 и8 являются нижней и верхней точками. Для горизонтальной и фронтальной проекций точка1 будет левой точкой, точка8 − правой. Для профильной проекции точки4 и5 − точки границы видимости: точки, расположенные ниже точек4 и5 на профильной проекции будут видимыми, все остальные− нет.

Точки 2, 3 и6, 7 − дополнительные, которые определяются для большей точности построения. Профильная проекция фигуры сечения – эллипс, у которого малая ось− отрезок 1-8, большая− 4-5 .

Построение проекций линий пересечения конуса плоскостью

В зависимости от направления секущей плоскости в сечении конуса вращения могут получиться различные линии, называемые линиями конических сечений.

Если секущая плоскость проходит через вершину конуса, в его сечении получается пара прямых − образующих (треугольник) (рис. 10, а). В результате пересечения конуса плоскостью, перпендикулярной к оси конуса, получается окружность (рис. 10, б). Если секущая плоскость наклонена к оси вращения конуса и не проходит через его вершину, в сечении конуса могут получиться эллипс, парабола или гипербола (рис. 10, в, г, д) в зависимости от величины угла наклона секущей плоскости.

Эллипс получается в том случае, когда угол β наклона секущей плоскости меньше угла наклонаα образующих конуса к его основанию(β < α) , то есть когда плоскость пересекает все образующие данного конуса (рис. 10, в).

Если углы α иβ равны, то есть секущая плоскость параллельна одной из образующих конуса, в сечении получается парабола (рис. 10, г).

Если секущая плоскость направлена под углом, который изменяется в пределах 90° β>α , то в сечении получается гипербола. В этом случае секу-

щая плоскость параллельна двум образующим конуса. Гипербола имеет две ветви, так как коническая поверхность двухполостная (рис. 10, д).

Известно, что точка принадлежит поверхно-

сти, если она принадлежит какой-нибудь линии

поверхности. Для конуса наиболее графически

простыми линиями являются прямые (образую-

щие) и окружности. Следовательно, если по усло-

вию задачи требуется найти горизонтальные про-

екции точек A иB , принадлежащих поверхности

конуса, то нужно через точки провести одну из

этих линий.

Горизонтальную проекцию точки A найдем

с помощью образующих. Для этого через точку A

и вершину конуса S проведем вспомогательную

фронтально-проецирующую плоскостьP(Pv). ЭтаB найдем, построив окружность, на которой она лежит. Для этого через точку проведем горизонтальную плоскостьT(Tv). Плоскость пересекает конус по окружности радиусаr . Строим горизонтальную проекцию этой окружности. Через точкуb ′ проведем линию связи до ее пересечения с окружностью. Задача также имеет два ответа− точ-

ки b 1 иb 2 .

Рассмотрим пример построения проекций линии пересечения конуса фронтально-проецирующей плоскостьюP(Pv), когда в сечении получается эллипс (рис. 12).

Фронтальная проекция линии сечения совпадает с фронтальным следом плоскости Pv .

Для удобства решения задачи обозначим крайние образующие конуса и определим характерные (опорные) точки.

Нижняя точка 1 лежит на образующейAS, верхняя− 2 на образующейΒ S . Эти точки определяют положение большой оси эллипса. Малая ось эллипса перпендикулярна большой оси. Чтобы найти малую ось, разделим отрезок 1-2 пополам. Точки3 и4 определяют малую ось эллипса. Точки5 и6 , расположенные на образующихCS иDS, являются точками границы видимости для профильной плоскости проекций. Проекции точек1, 2, 5 и6 находятся на соответствующих проекциях образующих. Чтобы найти проекции точек3 и4, проводим дополнительную секущую плоскостьT(Tv), которая рассекает конус по окружности радиусаr . На этой окружности находятся проекции данных точек. На горизонтальную плоскость проекций окружность проеци-


Top