Критические значения манна уитни для больших выборок. U-критерий Манна-Уитни в дипломной, курсовой и магистерской работе по психологии

Ограничения критерия

Назначение критерия

Непараметрический критерий Манна-Уитни

U - критерий Манна-Уитни предназначен для оценки различий между двумя выборками по уровню какого-либо признака, измеренного начиная со шкалы порядка (не ниже). Он позволяет выявлять различия между малыми выборками, когда n 1 , n 2 ³ 3 или n 1 = 2, n 2 ³ 5, и является более мощным, чем критерий Розенбаума.

Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами упорядоченных значений. При этом 1-м рядом (выборкой группой) называется тот ряд значений, в котором значения, по предварительной оценке, выше, а 2-м рядом - тот, где они предположительно ниже.

Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок.

Расчетное (эмпирическое) значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп. , тем более вероятно, что различия достоверны.

1. Признак должен быть измерен по ординальной, интервальной или пропорциональной шкале.

2. Выборки должны быть независимыми.

3. В каждой выборке должно быть не менее 3 наблюдений: n 1 , n 2 ³ 3 ; допускается, чтобы в одной выборке было 2 наблюдения, но тогда во второй их должно быть не менее 5.

4. В каждой выборке должно быть не более 60 наблюдений: n 1 , n 2 £ 60. Однако уже при n 1 , n 2 ³ 20 ранжирование становится достаточно трудоемким.

1. Для расчета критерия необходимо мысленно все значения 1-й выборки и 2-й выборки объединить в одну общую объединенную выборку и упорядочить их.

Все расчеты удобно производить в таблице (таблица 16), состоящей из 4-х столбцов. В эту таблицу заносятся упорядоченные значения объединенной выборки.

При этом:

a) значения объединенной выборки упорядочиваются по нарастанию значений;

b) значения каждой из выборок записываются в свой столбик: значения 1-й выборки записываются в столбик № 2, значения 2-й выборки записываются в столбик № 3;

c) каждое значение записывается на отдельной строчке;

d) общее число строк в этой таблице равно N=n 1 +n 2 , где n 1 - число испытуемых в 1-й выборке, n 2 - число испытуемых во 2-й выборке

Таблица 16

R 1 x y R 2
1 2 3 4
7,5
7,5
….. …..
….. …..
∑=28,5 ….. ….. ∑=16,5


2. Значения объединенной выборки ранжируются согласно правилам ранжирования, причем в столбике № 1 записываются ранги R 1 соответствующие значениям 1-й выборки, в столбике № 4 - ранги R 2 , соответствующие значениям 2-й выборки,

3. Подсчитывается сумма рангов отдельно по столбику № 1 (для выборки 1) и отдельно по столбику № 4 (для выборки 2). Обязательно проверить, совпадает ли общая сумма рангов с расчетной суммой рангов для объединенной выборки.

4. Определить бόльшую из двух ранговых сумм. Обозначим ее как Т х.

5. Определить расчетное значение критерия U по формуле:

где n 1 - количество испытуемых в выборке 1,

n 2 - количество испытуемых в выборке 2,

T x - бόльшая из двух ранговых сумм,

n x - количество испытуемых в выборке с бόльшей суммой рангов.

6. Правило вывода: Определить критические значения U по таблице критических значений для критерия Манна-Уитни (см. приложение 1.4) в зависимости от n 1 и n 2 .

Если U эмп. > U кр. 0,05 , различия между выборками статистически незначимы.

Если U эмп. £ U кр. 0,05 , различия между выборками статистически достоверны.

Чем меньше значения U, тем достоверность различий выше.

Критерий Манна-Уитни представляет непараметрическую альтернативу t -критерия для независимых выборок. Преимущество его состоит в том, что мы отказываемся от предположения нормальности распределения и одинаковых дисперсий. Необходимо, чтобы данные были измерены как минимум в порядковой шкале.

STATISTICA предполагает, что данные расположены тем же образом, что в и t -критерии для независимых выборок. Файл должен содержать кодовую (независимую) переменную, имеющую, по крайней мере, два разных кода для однозначной идентификации принадлежности каждого наблюдения к определенной группе.

Предположения и интерпретация. Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t -критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки. U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t-критерия для независимых выборок ; фактически, в некоторых случаях он имеет даже большую мощность, чем t -критерий.

Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению (см. Siegel, 1956). Поэтому вместе с U статистикой будут показаны z значение (для нормального распределения и соответствующее p -значение.

Точные вероятности для малых выборок. Для выборок малого объема STATISTICA вычислит точную вероятность, связанную с соответствующей U статистикой. Эта вероятность основана на подсчете всех возможных значений U при заданном количестве наблюдений в двух выборках (см. Dinneen & Blakesley, 1973). Программа сообщит (в последнем столбце таблицы результатов) значение 2 * p, где p равно 1 минус кумулятивная (односторонняя) вероятность соответствующей U статистики. Заметим, что это обычно не приводит к большой недооценке статистической значимости соответствующих эффектов (см. Siegel, 1956).

Статистика критерия выглядит следующим образом.

где W - статистика Вилкоксона , предназначенная для проверки этой же гипотезы

в противном случае

Таким образом, статистика U считает общее число тех случаев, в которых элементы второй выборки превосходят элементы первой выборки. Если гипотеза верна, то

Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t -критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки. U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t -критерия для независимых выборок; фактически, в некоторых случаях он имеет даже большую мощность, чем t -критерий.

Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению. Поэтому, вместе с U статистикой, будут показано z значение (для нормального распределения) и соответствующее p -значение.

Подробные инструкции по поводу того, как использовать критерий, вы можете найти дальше в части, касающейся примера применения.

Пример

Проверим гипотезу о принадлежности сравниваемых независимых выборок к одной и той же генеральной совокупности с помощью непараметрического U-критерия Манна-Уитни. Сравним результаты, полученные в примере Основные статистики и t-критерий Стьюдента для 2-го и 3-го столбцов таблицы по критерию Стьюдента, с результатами непараметрического сравнения.

Для расчета U-критерия Уилкоксона расположим варианты сравниваемых выборок в порядке возрастания в один обобщенный ряд и присвоим вариантам обобщенного ряда ранги от 1 до n1 + n2. Первая строка представляет собой варианты первой выборки, вторая - второй выборки, третья - соответствующие ранги в обобщенном ряду:





















Надо обратить внимание, что если имеются одинаковые варианты, им присваивается средний ранг, однако значение последнего ранга должно быть равно n1 + n2 (в нашем случае 20). Это правило используют для проверки правильности ранжирования.

Отдельно для каждой выборки рассчитываем суммы рангов их вариант R1 и R2. В нашем случае:

R1 = 1 + 2,5 + 2,5 + 5 + 5 + 9 + 9 + 9 + 12 + 14 = 69

R2 = 5 + 9 + 9 + 14 + 14 + 17 + 17 +17 + 19,5 + 19,5 = 141

Для проверки правильности вычислений можно воспользоваться другим правилом: R1 + R2 = 0,5 * (n1 + n2) * (n1 + n2 + 1). В нашем случае R1 + R2 = 210.

Статистика U1 = 69 - 10*11/2 = 14; U2 = 141 - 10*11/2 = 86.

Для проверки одностороннего критерия выбираем минимальную статистику U1 = 14 и сравниваем ее с критическим значением для n1 = n2 = 10 и уровня значимости 1%, равным 19.

Так как вычисленное значение критерия меньше табличного, нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборками признаются статистически значимыми. Таким образом, вывод о существовании различий, сделанный с помощью параметрического критерия Cтьюдента, подтверждается с помощью данного непараметрического метода.

Где T x - наибольшая сумма рангов, n x - наибольшая из объемов выборок n 1 и n 2 .

Назначение сервиса . С помощью данного онлайн-калькулятора производится расчет U критерия Манна-Уитни .

Назначение критерия

Критерий предназначен для оценки различий между двумя выборками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 , n 2 ≥ 3 или n 1 =2, n 2 ≥ 5. В каждой выборке должно быть не более 60 наблюдений.
Этот метод определяет, достаточно ли мала зона перекрещивающихся значений между двумя рядами. Положим, что первым рядом (выборкой, группой) мы называем тот ряд значений, в котором значения, по предварительной оценке, выше, а вторым рядом - тот, где они предположительно ниже.
Чем меньше область перекрещивающихся значений, тем более вероятно, что различия достоверны. Иногда эти различия называют различиями в расположении двух выборок.
Эмпирическое значение критерия U отражает то, насколько велика зона совпадения между рядами. Поэтому чем меньше U эмп, тем более вероятно, что различия достоверны.

Гипотезы
H 0: Уровень признака в группе 2 не ниже уровня признака в группе 1.
H 1: Уровень признака в группе 2 ниже уровня признака в группе 1.

Алгоритм расчета критерия Манна-Уитни

  1. Объединить все данные в единый ряд, пометив данные, принадлежащие разным выборкам.
  2. Проранжировать значения , приписывая меньшему значению меньший ранг. Всего рангов получится (n 1 + n 2).
  3. Подсчитать сумму рангов отдельно для каждой выборки.
  4. Определить большую из двух ранговых сумм.
  5. Определить значение U по формуле:
    U = n 1 ·n 2 + n x ·(n x + 1)/2 – T x ,
    где n 1 – объем выборки №1; n 2 – объем выборки №2; T x – большая из двух ранговых сумм; n x – объем максимальной выборки: n x = max(n 1 , n 2).
  6. Определить критические значения U кр по таблице . Если U эмп > U кр (0,05). H 0 принимается. Если U эмп ≤ U кр (0,05) H 0 отвергается. Чем меньше значения U, тем достоверность различий выше.

Пример . У предполагаемых участников психологического эксперимента был измерен уровень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано две группы юношей в возрасте от 18 до 24 лет студентов физического факультета и психологического факультета. Показатели вербального интеллекта представлены в таблице. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

Ф П
135 130
130 129
131 121
128 129
127 119
137 124
126 125
137 129
131 129
137 130
137 131
127 123
133
125

Сравнение результатов показывает, что значения выборки X несколько выше, чем выборки Y, поэтому первой считаем выборку X.
Таким образом, нам требуется определить, можно ли считать имеющуюся разницу между баллами существенной.
Решение .
Проранжируем представленную таблицу. При ранжировании объединяем две выборки в одну. Ранги присваиваются в порядке возрастания значения измеряемой величины, т.е. наименьшему рангу соответствует наименьший балл. Заметим, что в случае совпадения баллов для нескольких учеников ранг такого балла следует считать, как среднее арифметическое тех позиций, которые занимают данные баллы при их расположении в порядке возрастания.
Так как в матрице имеются связанные ранги (одинаковый ранговый номер) 1-го ряда, произведем их переформирование. Переформирование рангов производиться без изменения важности ранга, то есть между ранговыми номерами должны сохраниться соответствующие соотношения (больше, меньше или равно). Также не рекомендуется ставить ранг выше 1 и ниже значения равного количеству параметров (в данном случае n = 26). Переформирование рангов производится в табл.
Номера мест в упорядоченном ряду Расположение факторов по оценке эксперта Новые ранги
1 119 1
2 121 2
3 123 3
4 124 4
5 125 5.5
6 125 5.5
7 126 7
8 127 8.5
9 127 8.5
10 128 10
11 129 12.5
12 129 12.5
13 129 12.5
14 129 12.5
15 130 16
16 130 16
17 130 16
18 131 19
19 131 19
20 131 19
21 133 21
22 135 22
23 137 24.5
24 137 24.5
25 137 24.5
26 137 24.5

Используя предложенный принцип ранжирования, получим таблицу рангов.
X Ранг X Y Ранг Y
125 5.5 119 1
126 7 121 2
127 8.5 123 3
127 8.5 124 4
128 10 125 5.5
130 16 129 12.5
131 19 129 12.5
131 19 129 12.5
133 21 129 12.5
135 22 130 16
137 24.5 130 16
137 24.5 131 19
137 24.5
137 24.5
Сумма 234.5 Сумма 116.5

Этих данных достаточно, чтобы воспользоваться формулой расчёта эмпирического значения критерия:

Гипотеза H 0 о незначительности различий между выборками принимается, если U кр < u эмп. В противном случае H 0 отвергается и различие определяется как существенное.
где U kp - критическая точка, которую находят по таблице Манна-Уитни.
Найдем критическую точку U kp
По таблице находим U kp (0.05) = 45
Так как U kp > u эмп - принимаем альтернативную гипотезу H 1 ; различия в уровнях выборок можно считать существенными.

Методы математической обработки в психологии

ГЛАВА I. ОСНОВНЫЕ ПОНЯТИЯ, ИСПОЛЬЗУЕМЫЕ В МАТЕМАТИЧЕСКОЙ ОБРАБОТКЕ ПСИХОЛОГИЧЕСКИХ ДАННЫХ

Возможности и ограничения параметрических и непараметрических критериев

ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ
1. Позволяют прямо оценить различия в средних, полученных в двух вы­борках (t - критерий Стьюдента). Позволяют оценить лишь средние тенден­ции, например, ответить на вопрос, чаще ли в выборке А встречаются более высо­кие, а в выборке Б - более низкие значе­ния признака (критерии Q, U, φ и др.).
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). Позволяют оценить лишь различия в диа­пазонах вариативности признака (критерий φ).
3. Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распреде­ления признака. Позволяют выявить тенденции изменения признака при переходе от условия к усло­вию при любом распределении признака (критерии тенденций L и S).
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). Эта возможность отсутствует.
5. Экспериментальные данные должны отвечать двум, а иногда трем, усло­виям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. Экспериментальные данные могут не от­вечать ни одному из этих условий: а) значения признака могут быть пред­ставлены в любой шкале, начиная от шка­лы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсут­ствует.
6. Математические расчеты довольно сложны. Математические расчеты по большей час­ти просты и занимают мало времени (за исключением критериев χ 2 и λ).
7. Если условия, перечисленные в п.5, выполняются, параметрические кри­терии оказываются несколько более мощными, чем непараметрические. Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем пара­метрические, так как они менее чувстви­тельны к «засорениям».

Классификация задач и методов их решения

Задачи Условия Методы
1.Выявление различий в уровне исследуемого признака а) 2 выборки испытуемых Q- критерий Розенбаума; U - критерий Манна-Уитни; φ* - критерий (угловое преобразование Фишера)
б) 3 и более выбо­рок испытуемых S - критерий тенденций Джонкира; Н - критерий Крускала-Уоллиса.
2. Оценка сдвига зна­чений исследуемого признака а) 2 замера на од­ной и той же вы­борке испытуемых Т - критерий Вилкоксона; G - критерий знаков; φ* - критерий (угловое преобразование Фишера).
б) 3 и более заме­ров на одной и той же выборке испы­туемых χ л 2 - критерий Фридмана; L - критерий тенденций Пейджа.
3. Выявление различий в распределении а) при сопоставлении эмпирического признака распределения с теоретическим χ 2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; m - биномиальный критерий.
б) при сопоставле­нии двух эмпириче­ских распределений χ 2 - критерий Пирсона; λ - критерий Колмогорова-Смирнова; φ* - критерий (угловое преобразование Фишера).
4.Выявление степени согласованности изменений а) двух признаков
б) двух иерархий или профилей r s - коэффициент ранговой корреляции Спирмена.
5. Анализ изменений признака под влия­нием контролируе­мых условий а) под влиянием одного фактора S- критерий тенденций Джонкира; L - критерий тенденций Пейджа; однофакторный дисперсионный анализ Фишера.
б) под влиянием двух факторов одновременно Двухфакторный дисперсионный анализ Фишера.

ГЛАВА II. ВЫЯВЛЕНИЕ РАЗЛИЧИЙ В УРОВНЕ ИССЛЕДУЕМОГО ПРИЗНАКА

Принятие решения о выборе метода математической об­работки

Если данные уже получены, то вам предлагается следующий ал­горитм определения задачи и метода.

АЛГОРИТМ 2

Принятие решения о задаче и методе обработки на стадии планирования исследования

1. Определите, какая модель вам кажется наиболее подходящей для доказательства ваших научных предположений.

2. Внимательно ознакомьтесь с описанием метода, примерами и задачами для самостоятельного решения, которые к нему прилагаются.

3. Если вы убедились, что это то, что вам нужно, вернитесь к разделу «Ограничения критерия» и решите, сможете ли вы собрать данные, которые будут отвечать этим ограничениям (большие объемы выборок, наличие не­скольких выборок, монотонно различающихся по какому-либо признаку, напри­мер, по возрасту и т.п.).

4. Проводите исследование, а затем обрабатывайте полученные данные по заранее! выбранному алгоритму, если вам удалось выполнить ограничения.

5. Если ограничения выполнить не удалось, обратитесь к алгоритму 1.


Алгоритм принятия решения о выборе критерия для сопоставлений


Q - критерий Розенбаума

Назначение критерия . Критерий используется для оценки различий между двумявы­борками по уровнюкакого-либо признака, количественно измеренного. В каждой из выборок должно быть не менее 11 испытуемых.

Пример.

У предполагаемых участников психологического эксперимента, моделирующего деятельность воздушного диспетчера, был измерен уро­вень вербального и невербального интеллекта с помощью методики Д. Векслера. Было обследовано 26 юношей в возрасте от 18 до 24 лет (средний возраст 20,5 лет). 14 из них были студентами физического факультета, а 12 - студентами психологического факультета Ленинград­ского университета. Можно ли утверждать, что одна из групп превосходит другую по уровню вербального интеллекта?

АЛГОРИТМ 3 Подсчет критерия Q Розенбаума 1. Проверить, выполняются ли ограничения: n 1 ,n 2 ≥11, n 1 ,n 2 ≈n 2. 2. Упорядочить значения отдельно в каждой выборке по степени воз­растания признака. Считать выборкой 1 ту выборку, значения в ко­торой предположительно выше, а выборкой 2 - ту, где значения предположительно ниже. 3. Определить самое высокое (максимальное) значение в выборке 2. 4. Подсчитать количество значений в выборке 1, которые выше макси­мального значения в выборке 2. Обозначить полученную величину как S 1 . 5. Определить самое низкое (минимальное) значение в выборке 1. 6. Подсчитать количество значений в выборке 2, которые ниже мини­мального значения выборки 1. Обозначить полученную величину как S 2 . 7. Подсчитать эмпирическое значение Q по формуле: Q=S 1 +S2 8. По Табл. I определить критические значения Q для данных n 1 и n 2 . Если Q эмп равно Q 0,05 или превышает его, уровень признака в выборке 1 превышает уровень признака в вы­борке 2. 9. При n 1 и n 2 >26сопоставить полученное эмпирическое значение с Q к p = 8 (р≤ 0,05) и Q к p = 10 (p≤ 0,01). Если Q эмп ≥ Q к p = 8, уровень признака в выборке 1 превышает уровень признака в вы­борке 2.

Таблица I. Критические значения критерия Q Розенбаума

n
p=0,05
7
p=0,01

U - критерий Манна-Уитни

Назначение критерия . Критерий предназначен для оценки различий между двумя вы­борками по уровню какого-либо признака, количественно измеренного. Он позволяет выявлять различия между малыми выборками, когда n 1 ,n 2 ≥ 3 или n 1 =2, n 2 ≥5, и является более мощным, чем критерий Ро­зенбаума.

Пример

Уровень вербального интеллекта в выборке студентов физического факультета выше чем студентов психологического факультета Ленинградского университета. Попытаемся установить теперь, воспроизводится ли этот резуль­тат при сопоставлении выборок по уровню невербального интеллекта. Можно ли утверждать, что одна из выборок превосходит другую по уровню невербального интеллекта?

Правила ранжирования

1. Меньшему значению начисляется меньший ранг. Наименьшему значению начисляется ранг 1. Наибольшему значению начисляется ранг, соответствующий количе­ству ранжируемых значений. Например, если n=7, то наибольшее значение получит ранг 7, за возможным исключением для тех слу­чаев, которые предусмотрены правилом 2.

2. В случае, если несколько значений равны, им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны.

Допустим, следующие 2 значения равны 12 сек. Они должны были бы получить ранги 4 и 5, но, поскольку они равны, то получают средний ранг:

3. Общая сумма рангов должна совпадать с расчетной, которая опре­деляется по формуле:

где N - общее количество ранжируемых наблюдений (значений). Несовпадение реальной и расчетной сумм рангов будет свидетельст­вовать об ошибке, допущенной при начислении рангов или их сум­мировании. Прежде чем продолжить работу, необходимо найти ошибку и устранить ее.

АЛГОРИТМ 4

Подсчет критерия U Манна-Уитни.

1. Перенести все данные испытуемых на индивидуальные карточки.

2. Пометить карточки испытуемых выборки 1 одним цветом, скажем красным, а все карточки из выборки 2 - другим, например синим.

3. Разложить все карточки в единый ряд по степени нарастания при­знака, не считаясь с тем, к какой выборке они относятся, как если бы мы работали с одной большой выборкой.

4. Проранжировать значения на карточках, приписывая меньшему зна­чению меньший ранг. Всего рангов получится столько, сколько у нас (n 1 +п 2).

5. Вновь разложить карточки на две группы, ориентируясь на цветные обозначения: красные карточки в один ряд, синие - в другой.

7. Определить большую из двух ранговых сумм.

8. Определить значение U по формуле:

где n 1 - количество испытуемых в выборке 1;

n 2 - количество испытуемых в выборке 2;

Т х - большая из двух ранговых сумм;

n х - количество испытуемых в группе с большей суммой рангов.

9. Определить критические значения U по Табл. II. Если U эмп U к p _ 005 , различия достоверны. Чем меньше значения U, тем достоверность различий выше.


Таблица II. Критические значения критерия U Манна-Уитни

для уровней статистической значимости р≤0,05 и р≤0,01.

n1
n2 p=0,05
-
-
p=0,01
- -
- -
-
-
-
-
-
-

Таблица II. Продолжение

n 1
n 2 p=0,05
р=0,01

Таблица II. Продолжение

U-критерий является ранговым , поэтому он инвариантен по отношению к любому монотонному преобразованию шкалы измерения.

Другие названия: критерий Манна-Уитни-Уилкоксона (Mann-Whitney-Wilcoxon, MWW), критерий суммы рангов Уилкоксона (Wilcoxon rank-sum test) или критерий Уилкоксона-Манна-Уитни (Wilcoxon-Mann-Whitney test, WMW).

Примеры задач

Пример 1. Первая выборка - это пациенты, которых лечили препаратом А. Вторая выборка - пациенты, которых лечили препаратом Б. Значения в выборках - это некоторая характеристика эффективности лечения (уровень метаболита в крови, температура через три дня после начала лечения, срок выздоровления, число койко-дней, и т.д.) Требуется выяснить, имеется ли значимое различие эффективности препаратов А и Б, или различия являются чисто случайными и объясняются «естественной» дисперсией выбранной характеристики.

Пример 2. Первая выборка - это поля, обработанные агротехническим методом А. Вторая выборка - поля, обработанные агротехническим методом Б. Значения в выборках - это урожайность. Требуется выяснить, является ли один из методов эффективнее другого, или различия урожайности обусловлены случайными факторами.

Пример 3. Первая выборка - это дни, когда в супермаркете проходила промо-акция типа А (красные ценники со скидкой). Вторая выборка - дни промо-акции типа Б (каждая пятая пачка бесплатно). Значения в выборках - это показатель эффективности промо-акции (объём продаж, либо выручка в рублях). Требуется выяснить, какой из типов промо-акции более эффективен.

Описание критерия

Заданы две выборки .

Дополнительные предположения:

Иногда ошибочно считают, что U-критерий проверяет нулевую гипотезу равенства медиан в двух выборках. Существуют распределения, для которых гипотеза верна, но их медианы различны.

U-критерий можно применять для проверки гипотезы сдвига в качестве альтернативной , где - некоторая константа, отличная от нуля. При этой альтернативе U-критерий является состоятельным . Его целесообразно применять, если одним и тем же прибором проводятся две серии измерений двух значений некоторой физической величины. При этом функция распределения описывает погрешности измерения одного значения, а - другого. Однако во многих приложениях (в частности, эконометрических) нет особых оснований предполагать, что распределение второй выборки лишь сдвигается, но не меняется каким-либо иным образом.

U-критерий является непараметрическим аналогом критерия Стьюдента . Если выборки нормальные , то для проверки гипотезы сдвига предпочтительно применить более мощный критерий Стьюдента.

История

Данный метод выявления различий между выборками был предложен в 1945 году Френком Уилкоксоном. В 1947 году он был существенно переработан и расширен Манном и Уитни, по именам которых сегодня обычно и называется.

Литература

  1. Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other. // Annals of Mathematical Statistics. - 1947, №18. - Pp. 50-60.
  2. Wilcoxon F. Individual Comparisons by Ranking Methods. // Biometrics Bulletin 1. 1945. - Pp. 80–83.
  3. Орлов А. И. Эконометрика. - М.: Экзамен, 2003. - 576 с. (§4.5 Какие гипотезы можно проверять с помощью двухвыборочного критерия Вилкоксона?)
  4. Кобзарь А. И. Прикладная математическая статистика. - М.: Физматлит, 2006. - 816 с.

Top