Найти производную функции заданной неявно онлайн с подробным решением. Производные высших порядков неявно заданной функции

Производная функции, заданной неявно

Или короче – производная неявной функции. Что такое неявная функция? Поскольку мои уроки носят практическую направленность, я стараюсь избегать определений, формулировок теорем, но здесь это будет уместно сделать. А что такое вообще функция?

Функция одной переменной –это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом .
Переменная называется зависимой переменной или функцией .

Грубо говоря, буковка «игрек» в данном случае – и есть функция.

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию

Мы видим, что слева у нас одинокий «игрек» (функция), а справа – только «иксы» . То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: – пример неявной функции .

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость – рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Пример 1

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений ):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

– просто до безобразия, производная от функции равна её производной : .

Как дифференцировать
Здесь у нас сложная функция . Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» – САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус – внешняя функция, – внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что – тоже сложная функция, любой «игрек с наворотами» – сложная функция :

Само оформление решения должно выглядеть примерно так:


Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть – переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, – эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под фразой «неявная функция» понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные . Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт , иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле
Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные – в правую часть:

В левой части выносим за скобку:

Окончательный ответ:

Пример 3

Найти производную от функции, заданной неявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.

Пример 4

Найти производную от функции, заданной неявно

Заключаем обе части под штрихи и используем правило линейности:

Очень часто при решении практических задач (например, в высшей геодезии или аналитической фотограмметрии) появляются сложные функции нескольких переменных, т. е. аргументы x, y, z одной функцииf (x,y,z) ) сами являются функциями от новых переменныхU, V, W ).

Так, например, бывает при переходе от неподвижной системы координат Oxyz в подвижную системуO 0 UVW и обратно. При этом важно знать все частные производные по "неподвижным" - "старым" и "подвижным" - "новым" переменным, так как эти частные производные обычно характеризуют положение объекта в этих системах координат, и, в частности, влияют на соответствие аэрофотоснимков реальному объекту. В таких случаях применяются следующие формулы:

То есть задана сложная функцияT трех "новых" переменныхU, V, W посредством трёх "старых" переменныхx, y, z, тогда:

Замечание. Возможны вариации в количестве переменных. Например: если

В частности, еслиz = f(xy), y = y(x) , то получаем так называемую формулу "полной производной":

Эта же формула "полной производной" в случае:

примет вид:

Возможны и иные вариации формул (1.27) - (1.32).

Замечание: формула "полной производной" используется в курсе физики, раздел "Гидродинамика" при выводе основополагающей системы уравнений движения жидкости.

Пример 1.10. Дано:

Согласно (1.31):

§7 Частные производные неявно заданной функции нескольких переменных

Как известно, неявно заданная функция одной переменной определяется так: функция у независимой переменной x называется неявной, если она задана уравнением, не разрешенным относительноy :

Пример 1.11.

Уравнение

неявно задаёт две функции:

А уравнение

не задаёт никакой функции.

Теорема 1.2 (существования неявной функции).

Пусть функция z =f(х,у) и ее частные производныеf" x иf" y определены и непрерывны в некоторой окрестностиU M0 точкиM 0 (x 0 y 0 ) . Кроме того,f(x 0 ,y 0 )=0 иf"(x 0 ,y 0 )≠0 , тогда уравнение (1.33) определяет в окрестностиU M0 неявную функциюy= y(x) , непрерывную и дифференцируемую в некотором интервалеD с центром в точке x 0 , причемy(x 0 )=y 0 .

Без доказательства.

Из теоремы 1.2 следует, что на этом интервале D :

то- есть имеет место тождество по

где "полная" производная находится согласно (1.31)

То есть (1.35) дает формулу нахождения производной неявно заданной функции одной переменной x .

Аналогично определяется и неявная функция двух и более переменных.

Например, если в некоторой области V пространстваOxyz выполняется уравнение:

то при некоторых условиях на функцию F оно неявно задаёт функцию

При этом по аналогии с (1.35) ее частные производные находятся так.

Сначала рассмотрим неявную функцию одного переменного. Она определяется уравнением (1), которое каждому х из некоторой области Х сопоставляет определённое у. Тогда на Х определяется этим уравнением функция у=f(х). Её называют неявной или неявно заданной . Если уравнение (1) удаётся разрешить относительно у, т.е. получить вид у=f(х), то задание неявной функции становится явным. Однако разрешить уравнение удается не всегда и в этом случае не всегда ясно – существует ли вообще неявная функция у=f(х), определяемая уравнением (1) в некоторой окрестности точки (x 0 , y 0).

Например, уравнение
неразрешимо относительноy и неясно - определяет ли оно неявную функцию в некоторой окрестности точки (1,0), например. Заметим, что существуют уравнения, не определяющие никакой функции (x 2 +y 2 +1=0).

Оказывается справедливой следующая теорема:

Теорема «Существования и дифференцируемости неявной функции» (без доказательства)

Пусть дано уравнение
(1) и функция
, удовлетворяет условиям:


Тогда:


. (2)

Геометрически теорема утверждает, что в окрестности точки
, где выполняемы условия теоремы, неявная функция, определяемая уравнением (1), может быть задана в явном виде у=f(х), т.к. каждому значению х соответствует единственное у. Если даже мы не можем найти выражение функции в явном виде, мы уверены, что в некоторой окрестности точки М 0 это уже возможно в принципе.

Рассмотрим тот же пример:
. Проверим условия:

1)
,
- и функция и её производные непрерывны в окрестности точки (1,0) (как сумма и произведение непрерывных).

2)
.

3)
. Значит, неявная функция у= f(х) существует в окрестности точки (1,0). Мы не можем её выписать в явном виде, но можем все-таки найти её производную, которая будет даже непрерывной:

Рассмотрим теперь неявную функцию от нескольких переменных . Пусть задано уравнение

. (2)

Если каждой паре значений (х,у) из некоторой области уравнение (2) сопоставляет одно определённое значение z, то говорят, что это уравнение неявно определяет однозначную функцию от двух переменных
.

Справедлива и соответствующая теорема существования и дифференцирования неявной функции нескольких переменных.

Теорема 2 : Пусть дано уравнение
(2) и функция
удовлетворяет условиям:



Пример :
. Это уравнение задаётz как двузначную неявную функцию от х и у
. Если проверить условия теоремы в окрестности точки, например, (0,0,1), то видим выполнение всех условий:


Значит, неявная однозначная функция существует в окрестности точки (0,0,1): Можно сказать сразу, что это
, задающая верхнюю полусферу.

Существуют непрерывные частные производные
Они, кстати, получаются такими же, если дифференцировать неявную функцию, выраженную в явном виде, непосредственно.

Определение и теорема существования и дифференцирования неявной функции большего числа аргументов аналогичны.


Несомненно, в нашем сознании образ функции ассоциируется с равенством и соответствующей ему линией – графиком функции. Например, - функциональная зависимость, графиком которой является квадратичная парабола с вершиной в начале координат и направленными вверх ветвями; - функция синуса, известная своими волнами.

В этих примерах в левой части равенства находится y , а в правой части – выражение, зависящее от аргумента x . Другими словами, имеем уравнение, разрешенное относительно y . Представление функциональной зависимости в виде такого выражения называется явным заданием функции (или функцией в явном виде ). И этот тип задания функции является для нас наиболее привычным. В большинстве примеров и задач нам предстают именно явные функции. Про дифференцирование функций одной переменной, заданных в явном виде, мы уже в деталях поговорили.

Однако, функция подразумевает соответствие между множеством значений величины x и множеством значений y , причем это соответствие НЕ обязательно устанавливается какой-либо формулой или аналитическим выражением. То есть, существует множество способов задания функции помимо привычного .

В данной статье мы рассмотрим неявные функции и способы нахождения их производных . В качестве примеров функций, заданных неявно, можно привести или .


Как Вы заметили, неявная функция определяется соотношением . Но не все такие соотношения между x и y задают функцию. Например, ни одна пара действительных чисел x и y не удовлетворяет равенству , следовательно, это соотношение неявную функцию не задает.

Может неявно определять закон соответствия между величинами x и y , причем каждому значению аргумента x может соответствовать как одно (в этом случае имеем однозначную функцию) так и несколько значений функции (в этом случае функцию называют многозначной). К примеру, значению x = 1 соответствует два действительных значения y = 2 и y = -2 неявно заданной функции .

Неявную функцию привести к явному виду далеко не всегда возможно, иначе не пришлось бы дифференцировать сами неявные функции. Например, - не преобразовывается к явному виду, а - преобразовывается.

Теперь к делу.

Чтобы найти производную неявно заданной функции, необходимо продифференцировать обе части равенства по аргументу x , считая y – функцией от x , и после этого выразить .

Дифференцирование выражений, содержащих x и y(x) , проводится с использованием правил дифференцирования и правила нахождения производной сложной функции . Давайте сразу подробно разберем несколько примеров, чтобы дальше не было вопросов.


Пример.

Продифференцировать выражения по x , считая y функцией от x .

Решение.

Так как y – это функция от x , то - это сложная функция. Ее можно условно представить как f(g(x)) , где f – функция возведения в куб, а g(x) = y . Тогда, по формуле производной сложной функции имеем: .

При дифференцировании второго выражения выносим константу за знак производной и действуем как в предыдущем случае (здесь f – функция синуса, g(x) = y ):

Для третьего выражения применяем формулу производной произведения:

Последовательно применяя правила, продифференцируем последнее выражение:

Вот теперь можно переходить к нахождению производной неявно заданной функции, для этого все знания есть.

Пример.

Найти производную неявной функции .

Решение.

Производная неявно заданной функции всегда представляется в виде выражения, содержащего x и y : . Чтобы прийти к такому результату, продифференцируем обе части равенства:

Разрешим полученное уравнение относительно производной:

Ответ:

.

ЗАМЕЧАНИЕ.

Для закрепления материала решим еще пример.

Или короче - производная неявной функции. Что такое неявная функция? Поскольку мои уроки носят практическую направленность, я стараюсь избегать определений, формулировок теорем, но здесь это будет уместно сделать. А что такое вообще функция?

Функция одной переменной - это правило, по которому каждому значению независимой переменной соответствует одно и только одно значение функции .

Переменная называется независимой переменной или аргументом .
Переменная называется зависимой переменной или функцией .

Грубо говоря, буковка «игрек» в данном случае - и есть функция.

До сих пор мы рассматривали функции, заданные в явном виде. Что это значит? Устроим разбор полётов на конкретных примерах.

Рассмотрим функцию

Мы видим, что слева у нас одинокий «игрек» (функция), а справа - только «иксы» . То есть, функция в явном виде выражена через независимую переменную .

Рассмотрим другую функцию:

Здесь переменные и расположены «вперемешку». Причем никакими способами невозможно выразить «игрек» только через «икс». Что это за способы? Перенос слагаемых из части в часть со сменой знака, вынесение за скобки, перекидывание множителей по правилу пропорции и др. Перепишите равенство и попробуйте выразить «игрек» в явном виде: . Можно крутить-вертеть уравнение часами, но у вас этого не получится.

Разрешите познакомить: - пример неявной функции .

В курсе математического анализа доказано, что неявная функция существует (однако не всегда), у неё есть график (точно так же, как и у «нормальной» функции). У неявной функции точно так же существует первая производная, вторая производная и т.д. Как говорится, все права секс-меньшинств соблюдены.

И на этом уроке мы научимся находить производную от функции, заданной неявно. Это не так сложно! Все правила дифференцирования, таблица производных элементарных функций остаются в силе. Разница в одном своеобразном моменте, который мы рассмотрим прямо сейчас.

Да, и сообщу хорошую новость - рассмотренные ниже задания выполняются по довольно жесткому и чёткому алгоритму без камня перед тремя дорожками.

Пример 1

1) На первом этапе навешиваем штрихи на обе части:

2) Используем правила линейности производной (первые два правила урока Как найти производную? Примеры решений ):

3) Непосредственное дифференцирование.
Как дифференцировать и совершенно понятно. Что делать там, где под штрихами есть «игреки»?

Просто до безобразия, производная от функции равна её производной : .


Как дифференцировать

Здесь у нас сложная функция . Почему? Вроде бы под синусом всего одна буква «игрек». Но, дело в том, что всего одна буква «игрек» - САМА ПО СЕБЕ ЯВЛЯЕТСЯ ФУНКЦИЕЙ (см. определение в начале урока). Таким образом, синус - внешняя функция, - внутренняя функция. Используем правило дифференцирования сложной функции :

Произведение дифференцируем по обычному правилу :

Обратите внимание, что - тоже сложная функция, любой «игрек с наворотами» - сложная функция :

Само оформление решения должно выглядеть примерно так:

Если есть скобки, то раскрываем их:

4) В левой части собираем слагаемые, в которых есть «игрек» со штрихом. В правую часть - переносим всё остальное:

5) В левой части выносим производную за скобки:

6) И по правилу пропорции сбрасываем эти скобки в знаменатель правой части:

Производная найдена. Готово.

Интересно отметить, что в неявном виде можно переписать любую функцию. Например, функцию можно переписать так: . И дифференцировать её по только что рассмотренному алгоритму. На самом деле фразы «функция, заданная в неявном виде» и «неявная функция» отличаются одним смысловым нюансом. Фраза «функция, заданная в неявном виде» более общая и корректная, - эта функция задана в неявном виде, но здесь можно выразить «игрек» и представить функцию в явном виде. Под фразой «неявная функция» понимают «классическую» неявную функцию, когда «игрек» выразить нельзя.

Второй способ решения

Внимание! Со вторым способом можно ознакомиться только в том случае, если Вы умеете уверенно находить частные производные. Начинающие изучать математический анализ и чайники, пожалуйста, не читайте и пропустите этот пункт, иначе в голове будет полная каша.

Найдем производную неявной функции вторым способом.

Переносим все слагаемые в левую часть:

И рассматриваем функцию двух переменных:

Тогда нашу производную можно найти по формуле

Найдем частные производные:

Таким образом:

Второй способ решения позволяет выполнить проверку. Но оформлять им чистовой вариант задания нежелательно, поскольку частные производные осваивают позже, и студент, изучающий тему «Производная функции одной переменной», знать частные производные как бы еще не должен.

Рассмотрим еще несколько примеров.

Пример 2

Найти производную от функции, заданной неявно

Навешиваем штрихи на обе части:

Используем правила линейности:

Находим производные:

Раскрываем все скобки:

Переносим все слагаемые с в левую часть, остальные - в правую часть:

В левой части выносим за скобку:

Окончательный ответ:

Пример 3

Найти производную от функции, заданнойнеявно

Полное решение и образец оформления в конце урока.

Не редкость, когда после дифференцирования возникают дроби. В таких случаях от дробей нужно избавляться. Рассмотрим еще два примера.


Top