Примеры разложения в ряд тейлора. Разложение в ряд тейлора

16.1. Разложение элементарных функций в ряды Тейлора иМаклорена

Покажем, что если произвольная функция задана на множестве
, в окрестности точки
имеет множество производных и является суммой степенного ряда:

то можно найти коэффициенты этого ряда.

Подставим в степенной ряд
. Тогда
.

Найдем первую производную функции
:

При
:
.

Для второй производной получим:

При
:
.

Продолжая эту процедуру n раз получим:
.

Таким образом, получили степенной ряд вида:



,

который называется рядом Тейлора для функции
в окресности точки
.

Частным случаем ряда Тейлора является ряд Маклорена при
:



Остаток ряда Тейлора (Маклорена) получается отбрасыванием от основных рядов n первых членов и обозначается как
. Тогда функцию
можно записать как суммуn первых членов ряда
и остатка
:,

.

Остаток обычно
выражают разными формулами.

Одна из них в форме Лагранжа:

, где
.
.

Заметим, что на практике чаще используетсяряд Маклорена. Таким образом, для того, чтобы записать функцию
в виде суммыстепенного ряданеобходимо:

1) найти коэффициенты ряда Маклорена (Тейлора);

2) найти область сходимости полученного степенногоряда;

3) доказать, что данный ряд сходитсяк функции
.

Теорема 1 (необходимое и достаточное условие сходимости ряда Маклорена). Пусть радиус сходимости ряда
. Для того, чтобы этот ряд сходился в интервале
к функции
,необходимо и достаточно, чтобы выполнялось условие:
в указанном интервале.

Теорема 2. Если производные любого порядка функции
в некотором промежутке
ограниченны по абсолютной величине одним и тем же числомM , то есть
, то в этом промежутке функцию
можно разложитьв ряд Маклорена.

Пример 1 . Разложить в ряд Тейлора вокрестноститочки
функцию.

Решение.


.

,;

,
;

,
;

,

.......................................................................................................................................

,
;

Область сходимости
.

Пример 2 . Разложить функциюв ряд Тейлора вокрестноститочки
.

Решение:

Находим значение функции и ее производных при
.

,
;

,
;

...........……………………………

,
.

Подставляем эти значения в ряд. Получаем:

или
.

Найдем область сходимости этого ряда. По признаку Даламбера ряд сходится, если

.

Следовательно, при любом этот пределменее 1, а потому область сходимости ряда будет:
.

Рассмотрим несколько примеров разложенияв ряд Маклорена основных элементарных функций. Напомним, что ряд Маклорена:



.

сходитсянаинтервале
к функции
.

Отметим, что для разложенияфункции в ряд необходимо:

а) найти коэффициенты ряда Маклорена для данной функции;

б) вычислить радиус сходимостидля полученного ряда;

в) доказать, что полученный ряд сходитсяк функции
.

Пример 3. Рассмотримфункцию
.

Решение.

Вычислим значение функции и ее производных при
.

Тогда числовые коэффициенты ряда имеют вид:

для любого n. Подставим найденные коэффициенты в ряд Маклорена и получим:

Найдем радиус сходимости полученного ряда, а именно:

.

Следовательно, ряд сходитсянаинтервале
.

Этот ряд сходитсяк функции при любых значениях , потому чтоналюбом промежутке
функция иее производныепоабсолютной величинеограничены числом .

Пример 4 . Рассмотрим функцию
.

Решение .


:

Нетрудно заметить, что производные четногопорядка
, а производные нечетногопорядка. Подставим найденные коэффициенты в ряд Маклорена иполучимразложение:

Найдем интервал сходимости данного ряда. По признаку Даламбера:

для любого . Следовательно, ряд сходитсянаинтервале
.

Этот ряд сходитсяк функции
, потому что все ее производные ограничены единицей.

Пример 5 .
.

Решение.

Найдем значение функции и ее производных при
:

Таким образом, коэффициенты данного ряда:
и
, следовательно:

Аналогично с предыдущим рядом область сходимости
. Ряд сходитсяк функции
, потому что все еепроизводные ограничены единицей.

Обратим внимание, что функция
нечетнаяи разложениев рядпо нечетнымстепеням, функция
– четная и разложение в ряд по четным степеням.

Пример 6 . Биномиальный ряд:
.

Решение .

Найдем значение функции и ее производных при
:

Отсюда видно, что:

Подставим эти значения коэффициентов в ряд Маклорена и получим разложение данной функции в степенной ряд:

Найдем радиус сходимости этого ряда:

Следовательно, ряд сходится на интервале
. В предельных точках при
и
ряд может сходится или нет в зависимости от показателя степени
.

Исследованный ряд сходится на интервале
к функции
, то есть суммаряда
при
.

Пример 7 . Разложим в ряд Маклорена функцию
.

Решение.

Для разложенияв ряд этой функции используем биномиальный ряд при
. Получим:

На основе свойства степенных рядов (степенной ряд можно интегрировать в области его сходимости) найдем интеграл от левой и правой частей данного ряда:

Найдем область сходимости данного ряда:
,

то есть областью сходимости данного ряда является интервал
. Определим сходимость ряда на концах интервала. При

. Этот ряд является гармоничным рядом, то есть расходится. При
получим числовой ряд с общим членом
.

Ряд по признаку Лейбница сходится. Таким образом, областью сходимости данного ряда является промежуток
.

16.2. Применение степенных рядов степеней в приближенных вычислениях

В приближенных вычислениях степенные ряды играют исключительно большую роль. С их помощью составлены таблицы тригонометрических функций, таблицы логарифмов, таблицы значений других функций, которые используют в разных областях знаний, например в теории вероятностей и математической статистике. Кроме того, разложениефункций в степенной ряд полезно для их теоретического исследования. Главным вопросом при использовании степенных рядов в приближенных вычислениях является вопрос оценки погрешности при замене суммы ряда суммой его первыхn членов.

Рассмотрим два случая:

функция разложена в знакочередующийся ряд;

функция разложена в знакопостоянный ряд.

Вычисление с помощью знакочередующихся рядов

Пусть функция
разложена в знакочередующийся степенной ряд. Тогда при вычислении этой функции для конкретного значения получаем числовой ряд, к которому можно применить признак Лейбница. В соответствии с этим признаком, если сумму ряда заменить суммой его первыхn членов, то абсолютная погрешность не превышает первого члена остатка этого ряда, то есть:
.

Пример 8 . Вычислить
с точностью до 0,0001.

Решение .

Будем использовать ряд Маклорена для
, подставив значение угла в радианах:

Если сравнить первый и второй члены ряда с заданной точностью, то: .

Третий член разложения:

меньше заданной точности вычисления. Следовательно, для вычисления
достаточно оставить два члена ряда, то есть

.

Таким образом
.

Пример 9 . Вычислить
с точностью 0,001.

Решение .

Будем использовать формулу биномиального ряда. Для этого запишем
в виде:
.

В этом выражении
,

Сравним каждый из членов ряда с точностью, которая задана. Видно, что
. Следовательно, для вычисления
достаточно оставить три члена ряда.

или
.

Вычисление с помощью знакоположительных рядов

Пример 10 . Вычислить число с точностью до 0,001.

Решение .

В ряд для функцїї
подставим
. Получим:

Оценим погрешность, которая возникает при замене суммы ряда суммой первых членов. Запишем очевидное неравенство:

то есть 2 0, т.е. этот ряд сходится на интервале .

Тогда каждому значению х из интервала сходимости соответствует некоторая сумма ряда. Следовательно, сумма степенного ряда есть функция от х на интервале сходимости. Обозначая её через f (x ), можем записать равенство

понимая его в том смысле, что сумма ряда в каждой точке х из интервала сходимости равна значению функции f (x ) в этой точке. В этом же смысле будем говорить, что степенной ряд (29) сходится к функции f (x ) на интервале сходимости.

Вне интервала сходимости равенство (30) не имеет смысла.

Пример 7. Найти сумму сумму степенного ряда

Решение. Это геометрический ряд, у которого a = 1, а q = x . Следовательно, его сумма есть функция . Ряд сходится, если , а - его интервал сходимости. Поэтому равенство

справедливо лишь для значений , хотя функция определена для всех значений х , кроме х = 1.

Можно доказать, что сумма степенного ряда f (x ) непрерывна и дифференцируема на любом отрезке внутри интервала сходимости, в частности в любой точке интервала сходимости ряда.

Приведем теоремы о почленном дифференцировании и интегрировании степенных рядов.

Теорема 1. Степенной ряд (30) в интервале его сходимости можно почленно дифференцировать неограниченное число раз, причём получающиеся при этом степенные ряды имеют тот же радиус сходимости, что исходный ряд, а суммы их соответственно равны .

Теорема 2. Степенной ряд (30) можно неограниченное число раз почленно интегрировать в пределах от 0 до х , если , причём получающиеся при этом степенные ряды имеют тот же радиус сходимости, что и исходный ряд, а суммы их соответственно равны

Разложение функций в степенные ряды

Пусть дана функция f (x ), которую требуется разложить в степенной ряд, т.е. представить в виде (30):

Задача состоит в определении коэффициентов ряда (30). Для этого, дифференцируя равенство (30) почленно, последовательно найдём:

……………………………………………….. (31)

Полагая в равенствах (30) и (31) х = 0, находим

Подставляя найденные выражения в равенство (30), получим

(32)

Найдём разложение в ряд Маклорена некоторых элементарных функций.

Пример 8. Разложить в ряд Маклорена функцию

Решение. Производные этой функции совпадают с самой функцией:

Поэтому при х = 0 имеем

Подставляя эти значения в формулу (32), получим искомое разложение:

(33)

Этот ряд сходится на всей числовой прямой (его радиус сходимости ).

Разложение функции в ряд Тейлора, Маклорена и Лорана на сайт для тренировки практических навыков. Это разложение функции в ряд дает представление математикам оценить приближенное значение функции в некоторой точки области ее определения. Намного проще вычислить такое значение функции, по сравнению с применением таблицы Бредиса, так неактуальной в век вычислительной техники. В ряд Тейлора разложить функцию означает вычислить коэффициенты перед линейными функциями этого ряда и записать это в правильном виде. Путают студенты эти два ряда, не понимая, что является общим случаем, а что частным случаем второго. Напоминаем раз и навсегда, ряд Маклорена - частный случай Тейлоровского ряда, то есть это и есть ряд Тейлора, но в точке x = 0. Все краткие записи разложения известных функций, таких как e^x, Sin(x), Cos(x) и другие, это и есть разложения в ряд Тейлора, но в точке 0 для аргумента. Для функций комплексного аргумента ряд Лорана является наиболее частой задачей в ТФКП, так как представляет двусторонний бесконечный ряд. Он и является суммой двух рядов. Мы предлагаем вам посмотреть пример разложения прямо на сайте сайт, это сделать очень просто, нажав на "Пример" с любым номером, а затем кнопку "Решение". Именно такому разложению функции в ряд сопоставлен мажорирующий ряд, ограничивающий функцию исходную в некоторой области по оси ординат, если переменная принадлежит области абсцисс. Векторному анализу поставляется в сравнение другая интересная дисциплина в математике. Поскольку исследовать нужно каждое слагаемое, то необходимо достаточно много времени на процесс. Всякому ряду Тейлора можно сопоставить ряд Маклорена, заменив x0 на нуль, а вот по ряду Маклорена порой не очевидно представление ряда Тейлора обратно. Как бы это и не требуется делать в чистом виде, но интересно для общего саморазвития. Всякому ряду Лорана соответствует двусторонний бесконечный степенной ряд по целым степеням z-a, другими словами ряд вида того же Тейлора, но немного отличающегося вычислением коэффициентов. Про область сходимости ряда Лорана расскажем чуть позже, после нескольких теоретических выкладок. Как и в прошлом веке, поэтапного разложения функции в ряд вряд ли можно достичь только лишь приведением слагаемых к общему знаменателю, так как функции в знаменателях нелинейные. Приближенное вычисление функционального значения требует постановка задач. Задумайтесь над тем, что когда аргумент ряда Тейлора есть линейная переменная, то разложение происходит в несколько действий, но совсем другая картина, когда в качестве аргумента раскладываемой функции выступает сложная или нелинейная функция, тогда очевиден процесс представления такой функции в степенной ряд, поскольку, таким образом, легко вычислить, пусть и приближенное, но значение в любой точке области определения, с минимальной погрешностью, мало влияющей на дальнейшие расчеты. Это касается и ряда Маклорена. когда необходимо вычислить функция в нулевой точке. Однако сам ряд Лорана здесь представлен разложением на плоскости с мнимыми единицами. Также не без успеха будет правильное решение задачи в ходе общего процесса. В математике такого подхода не знают, но он объективно существует. В результате вы можете прийти к выводу так называемых поточечных подмножеств, и в разложении функции в ряд нужно применять известные для этого процесса методы, таких как применение теории производных. Лишний раз убеждаемся в правоте учителя, который сделал свои предположения на счет итогов пост вычислительных выкладок. Давайте отметим, что ряд Тейлора, полученный по всем канонам математики, существует и определен на всей числовой оси, однако, уважаемые пользователи сервиса сайт, не забывайте вид исходной функции, ведь может получиться так, что изначально необходимо установит область определения функции, то есть выписать и исключить из дальнейших рассмотрений те точки, при которых функция не определена в области действительных чисел. Так сказать это покажет вашу расторопность при решении задачи. Не исключением высказанного будет и построение ряда Маклорена с нулевым значением аргумента. Процесс нахождения области определения функции никто при этом не отменял, и вы обязаны подойти со всей серьезностью к этому математическому действию. В случае содержания рядом Лорана главной части, параметр "a" будет называться изолированной особой точкой, и ряд Лорана будет разложен в кольце - это пересечение областей сходимости его частей, отсюда будет следовать соответствующая теорема. Но не все так сложно как может показаться на первый взгляд неопытному студенту. Изучив как раз ряд Тейлора, можно с легкостью понять ряд Лорана - обобщенный случай на расширение пространства чисел. Любое разложение функции в ряд можно производить только в точке области определения функции. Следует учитывать свойства таких функций, например, как периодичность или бесконечная дифференцируемость. Также предлагаем вам воспользоваться таблицей готовых разложений в ряд Тейлора элементарных функций, поскольку одна функция может быть представлена до десятков отличных от друг друга степенных рядов, что можно видеть из применения нашего калькулятора онлайн. Онлайн ряд Маклорена проще простого определить, если воспользоваться уникальным сервисом сайт, вам достаточно только ввести правильную записанную функцию и представленный ответ получите в считанные секунды, он будет гарантированно точным и в стандартно записанном виде. Можете переписать результат сразу в чистовик на сдачу преподавателю. Правильно бы сначала определить аналитичность рассматриваемой функции в кольцах, а затем однозначно утверждать, что она разложима в ряд Лорана во всех таких кольцах. Важен момент чтобы не упустить из вида содержащие отрицательных степеней членов ряда Лорана. На этом сосредоточьтесь как можно сильнее. Применяйте с пользой теорему Лорана о разложении функции в ряд по целым степеням.


Top