Методы решения логических уравнений. Логика. Логические функции. Решение уравнений

J ∧ ¬K ∧ L ∧ ¬M ∧ (N ∨ ¬N) = 0, где J, K, L, M, N — логические переменные?

Пояснение.

Выражение (N ∨ ¬N) истинно при любом N, поэтому

J ∧ ¬K ∧ L ∧ ¬M = 0.

Применим отрицание к обеим частям логического уравнения и используем закон де Моргана ¬ (А ∧ В) = ¬ А ∨ ¬ В. Получим ¬J ∨ K ∨ ¬L ∨ M = 1.

Логическая сумма равна 1, если хотя бы одно из составляющих ее высказываний равно 1. Поэтому полученному уравнению удовлетворяют любые комбинации логических переменных кроме случая, когда все входящие в уравнение величины равны 0. Каждая из 4 переменных может быть равна либо 1, либо 0, поэтому всевозможных комбинаций 2·2·2·2 = 16. Следовательно, уравнение имеет 16 −1 = 15 решений.

Осталось заметить, что найденные 15 решений соответствуют любому из двух возможных значений значений логической переменной N, поэтому исходное уравнение имеет 30 решений.

Ответ: 30

Сколько различных решений имеет уравнение

((J → K) → (M ∧ N ∧ L)) ∧ ((J ∧ ¬K) → ¬ (M ∧ N ∧ L)) ∧ (M → J) = 1

где J, K, L, M, N – логические переменные?

В ответе не нужно перечислять все различные наборы значений J, K, L, M и N, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.

Пояснение.

Используем формулы A → B = ¬A ∨ B и ¬(А ∨ В) = ¬А ∧ ¬В

Рассмотрим первую подформулу:

(J → K) → (M ∧ N ∧ L) = ¬(¬J ∨ K) ∨ (M ∧ N ∧ L) = (J ∧ ¬K) ∨ (M ∧ N ∧ L)

Рассмотрим вторую подформулу

(J ∧ ¬K) → ¬(M ∧ N ∧ L) = ¬(J ∧ ¬K) ∨ ¬(M ∧ N ∧ L) = (¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L

Рассмотрим третью подформулу

1) M → J = 1 следовательно,

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (1 ∧ N ∧ L) = ¬K ∨ N ∧ L;

(0 ∨ K) ∨ 0 ∨ ¬N ∨ ¬L = K ∨ ¬N ∨ ¬L;

Объединим:

¬K ∨ N ∧ L ∧ K ∨ ¬N ∨ ¬L = 0 ∨ L ∨ 0 ∨ ¬L = L ∨ ¬L = 1 следовательно, 4 решения.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (1 ∧ ¬K) ∨ (0 ∧ N ∧ L) = ¬K;

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (0 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L = K ∨ 1 ∨ ¬N ∨ ¬L

Объединим:

K ∨ 1 ∨ ¬N ∨ ¬L ∧ ¬K = 1 ∨ ¬N ∨ ¬L следовательно, 4 решения.

в) M = 0 J = 0.

(J ∧ ¬K) ∨ (M ∧ N ∧ L) = (0 ∧ ¬K) ∨ (0 ∧ N ∧ L) = 0.

(¬J ∨ K) ∨ ¬M ∨ ¬N ∨ ¬L = (1 ∨ K) ∨ 1 ∨ ¬N ∨ ¬L.

Ответ: 4 + 4 = 8.

Ответ: 8

Сколько различных решений имеет уравнение

((K ∨ L) → (L ∧ M ∧ N)) = 0

где K, L, M, N – логические переменные? В Ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве Ответа Вам нужно указать количество таких наборов.

Пояснение.

перепишем уравнение, используя более простые обозначения операций:

((K + L) → (L · M · N)) = 0

1) из таблицы истинности операции «импликация» (см. первую задачу) следует, что это равенство верно тогда и только тогда, когда одновременно

K + L = 1 и L · M · N = 0

2) из первого уравнения следует, что хотя бы одна из переменных, K или L, равна 1 (или обе вместе); поэтому рассмотрим три случая

3) если K = 1 и L = 0, то второе равенство выполняется при любых М и N; поскольку существует 4 комбинации двух логических переменных (00, 01, 10 и 11), имеем 4 разных решения

4) если K = 1 и L = 1, то второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

5) если K = 0, то обязательно L = 1 (из первого уравнения); при этом второе равенство выполняется при М · N = 0; существует 3 таких комбинации (00, 01 и 10), имеем еще 3 решения

6) всего получаем 4 + 3 + 3 = 10 решений.

Ответ: 10

Сколько различных решений имеет уравнение

(K ∧ L) ∨ (M ∧ N) = 1

Пояснение.

Выражение истинно в трех случаях, когда (K ∧ L) и (M ∧ N) равны соответственно 01, 11, 10.

1) "01" K ∧ L = 0; M ∧ N = 1, => M, N равны 1, а K и L любые, кроме как одновременно 1. Следовательно 3 решения.

2) "11" K ∧ L = 1; M ∧ N = 1. => 1 решение.

3) "10" K ∧ L = 1; M ∧ N = 0. => 3 решения.

Ответ: 7.

Ответ: 7

Сколько различных решений имеет уравнение

(X ∧ Y ∨ Z) → (Z ∨ P) = 0

где X, Y, Z, P – логические переменные? В ответе не нужно перечислять все различные наборы значений, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Пояснение.

(X ∧ Y ∨ Z) → (Z ∨ P) = 0 =>

¬(X ∧ Y ∨ Z) ∨ (Z ∨ P) = 0;

(¬X ∨ ¬Y ∧ ¬Z) ∨ (Z ∨ P) = 0;

Логическое ИЛИ ложно только в одном случае: когда оба выражения ложны.

Следовательно,

(Z ∨ P) = 0 => Z = 0, P = 0.

¬X ∨ ¬Y ∧ ¬Z = 0 => ¬X ∨ ¬Y ∧ 1 = 0 =>

¬X ∨ ¬Y = 0 => X = 1; Y = 1.

Следовательно, существует только одно решение уравнения.

Ответ: 1

Сколько различных решений имеет уравнение

(K ∨ L) ∧ (M ∨ N) = 1

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Пояснение.

Логическое И истинно только в одном случае: когда все выражения истинны.

K ∨ L = 1, M ∨ N = 1.

Каждое из уравнений дает по 3 решения.

Рассмотрим уравнение А ∧ В = 1 если и А и В принимают истинные значения в трех случаях каждое, то в целом уравнение имеет 9 решений.

Следовательно ответ 9.

Ответ: 9

Сколько различных решений имеет уравнение

((A → B)∧ C) ∨ (D ∧ ¬D)= 1,

где A, B, C, D – логические переменные?

В ответе не нужно перечислять все различные наборы значений A, B, C, D, при которых выполнено данное равенство. В качестве ответа вам нужно указать количество таких наборов.

Пояснение.

Логическое "ИЛИ" истинно, когда истинно хотя бы одно из утверждений.

(D ∧ ¬D)= 0 при любых D.

Следовательно,

(A → B)∧ C) = 1 => C = 1; A → B = 1 => ¬ A ∨ B = 1, что дает нам 3 варианта решений при каждом D.

(D ∧ ¬ D)= 0 при любых D, что дает нам два варианта решений (при D = 1, D = 0).

Следовательно: всего решений 2*3 = 6.

Итого 6 решений.

Ответ: 6

Сколько различных решений имеет уравнение

(¬K ∨ ¬L ∨ ¬M) ∧ (L ∨ ¬M ∨ ¬N) = 0

где K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений K, L, M и N, при которых выполнено данное равенство. В качестве ответа вам нужно указать только количество таких наборов.

Пояснение.

Применим отрицание к обеим частям уравнения:

(K ∧ L ∧ M) ∨ (¬L ∧ M ∧ N) = 1

Логическое ИЛИ истинно в трех случаях.

Вариант 1.

K ∧ L ∧ M = 1, тогда K, L, M = 1, а ¬L ∧ M ∧ N = 0. N любое, то есть 2 решения.

Вариант 2.

¬L ∧ M ∧ N = 1, тогда N, M = 1; L = 0, K любое, то есть 2 решения.

Следовательно, ответ 4.

Ответ: 4

A, B и С — целые числа, для которых истинно высказывание

¬ (А = B) ∧ ((A > B)→(B > C)) ∧ ((B > A)→(С > B)).

Чему равно В, если A = 45 и C = 43?

Пояснение.

1) ¬(А = B); (A > B)→(B > C); (B > A)→(С > B);

2) эти простые высказывания связаны операцией ∧ (И, конъюнкция), то есть, они должны выполняться одновременно;

3) из ¬(А = B)=1 сразу следует, что А B;

4) предположим, что A > B, тогда из второго условия получаем 1→(B > C)=1; это выражение может быть истинно тогда и только тогда, когда B > C = 1;

5) поэтому имеем A > B > C, этому условию соответствует только число 44;

6) на всякий случай проверим и вариант A 0 →(B > C)=1;

это выражение истинно при любом B; теперь смотрим третье условие получаем

это выражение может быть истинно тогда и только тогда, когда C > B, и тут мы получили противоречие, потому что нет такого числа B, для которого C > B > A.

Ответ: 44.

Ответ: 44

Составьте таблицу истинности для логической функции

X = (А ↔ B) ∨ ¬(A → (B ∨ C))

в которой столбец значений аргумента А представляет собой двоичную запись числа 27, столбец значений аргумента В — числа 77, столбец значений аргумента С — числа 120. Число в столбце записывается сверху вниз от старшего разряда к младшему(включая нулевой набор). Переведите полученную двоичную запись значений функции X в десятичную систему счисления.

Пояснение.

Запишем уравнение, используя более простые обозначения операций:

1) это выражение с тремя переменными, поэтому в таблице истинности будет строчек; следовательно, двоичная запись чисел, по которым строятся столбцы таблицы А, В и С, должна состоять из 8 цифр

2) переведем числа 27, 77 и 120 в двоичную систему, сразу дополняя запись до 8 знаков нулями в начале чисел

3) вряд ли вы сможете сразу написать значения функции Х для каждой комбинации, поэтому удобно добавить в таблицу дополнительные столбцы для расчета промежуточных результатов (см. таблицу ниже)

X 0
А В С
0 0
0 1 1
0 0 1
1 0 1
1 1 1
0 1 0
1 0 0
1 1 0

4) заполняем столбцы таблицы:

А В С X
0 0 0 1 0 1 0 1
0 1 1 0 1 1 0 0
0 0 1 1 1 1 0 1
1 0 1 0 1 1 0 0
1 1 1 1 1 1 0 1
0 1 0 0 1 1 0 0
1 0 0 0 0 0 1 1
1 1 0 1 1 1 0 1

значение равно 1 только в тех строчках, где А = В

значение равно 1 в тех строчках, где либо В либо С = 1

значение равно 0 только в тех строчках, где А = 1 и В + С = 0

значение — это инверсия предыдущего столбца (0 заменяется на 1, а 1 – на 0)

результат Х (последний столбец) — это логическая сумма двух столбцов и

5) чтобы получить ответ, выписываем биты из столбца Х сверху вниз:

6) переводим это число в десятичную систему:

Ответ: 171

Каково наибольшее целое число X, при котором истинно высказывание (10 (X+1)·(X+2))?

Пояснение.

Уравнение является операцией импликации между двумя отношениями:

1) Конечно, здесь можно применить тот же способ, что и в примере 2208, однако при этом понадобится решать квадратные уравнения (не хочется…);

2) Заметим, что по условию нас интересуют только целые числа, поэтому можно попытаться как─то преобразовать исходное выражение, получив равносильное высказывание (точные значения корней нас совершенно не интересуют!);

3) Рассмотрим неравенство : очевидно, что может быть как положительным, так и отрицательным числом;

4) Легко проверить, что в области высказывание истинно при всех целых , а в области — при всех целых (чтобы не запутаться, удобнее использовать нестрогие неравенства, и , вместо и );

5) Поэтому для целых можно заменить на равносильное выражение

6) область истинности выражения — объединение двух бесконечных интервалов;

7) Теперь рассмотрим второе неравенство : очевидно, что так же может быть как положительным, так и отрицательным числом;

8) В области высказывание истинно при всех целых , а в области — при всех целых , поэтому для целых можно заменить на равносильное выражение

9) область истинности выражения — закрытый интервал;

10) Заданное выражение истинно везде, кроме областей, где и ;

11) Обратите внимание, что значение уже не подходит, потому что там и , то есть импликация дает 0;

12) При подставлении 2, (10 (2+1) · (2+2)), или 0 → 0 что удовлетворяет условию.

Таким образом, ответ 2.

Ответ: 2

Каково наибольшее целое число X, при котором истинно высказывание

(50 (X+1)·(X+1))?

Пояснение.

Применим преобразование импликации и преобразуем выражение:

(50 (X+1)·(X+1)) ⇔ ¬(X 2 > 50) ∨ ((X+1) 2) ∨ (|X+1|).

Логическое ИЛИ истинно когда истинно хотя бы одно логическое высказывание. Решив оба неравенства и учитывая, что видим, что наибольшее целое число, при котором выполняется хотя бы одно из них - 7 (на рисунке жёлтым изображено положительное решение второго неравенства, синим - первого).

Ответ: 7

Укажите значения переменных К, L, M, N, при которых логическое выражение

(¬(М ∨ L) ∧ К) → (¬К ∧ ¬М ∨ N)

ложно. Ответ запишите в виде строки из 4 символов: значений переменных К, L, М и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что К=1, L=1, M=0, N=1.

Пояснение.

Дублирует задание 3584.

Ответ: 1000

(¬K ∨ M) → (¬L ∨ M ∨ N)

Пояснение.

Применим преобразование импликации:

(K ∧ ¬M) ∨ (¬L ∨ M ∨ N) = 0

Применим отрицание к обоим частям уравнения:

(¬K ∨ M) ∧ L ∧ ¬M ∧ ¬N = 1

Преобразуем:

(¬K ∧ L ∨ M ∧ L) ∧ ¬M ∧ ¬N = 1

Следовательно, M = 0, N = 0, рассмотрим теперь (¬K ∧ L ∨ M ∧ L):

из того, что M = 0, N = 0 следует, что M ∧ L = 0, тогда ¬K ∧ L = 1, то есть K = 0, L = 1.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(¬(M ∨ L) ∧ K) → ((¬K ∧ ¬M) ∨ N)

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Пояснение.

Запишем уравнение, используя более простые обозначения операций (условие «выражение ложно» означает, что оно равно логическому нулю):

1) из формулировки условия следует, что выражение должно быть ложно только для одного набора переменных

2) из таблицы истинности операции «импликация» следует, что это выражение ложно тогда и только тогда, когда одновременно

3) первое равенство (логическое произведение равно 1) выполняется тогда и только тогда, когда и ; отсюда следует (логическая сумма равна нулю), что может быть только при ; таким образом, три переменных мы уже определили

4) из второго условия, , при и получаем .

Дублирует задание

Ответ: 1000

Укажите значения логических переменных Р, Q, S, Т, при которых логическое выражение

(Р ∨ ¬Q) ∨ (Q → (S ∨ Т)) ложно.

Ответ запишите в виде строки из четырех символов: значений переменных Р, Q, S, T (в указанном порядке).

Пояснение.

(1) (Р ∨ ¬Q) = 0

(2) (Q → (S ∨ Т)) = 0

(1) (Р ∨ ¬Q) = 0 => P = 0, Q = 1.

(2) (Q → (S ∨ Т)) = 0 Применим преобразование импликации:

¬Q ∨ S ∨ Т = 0 => S = 0, T = 0.

Ответ: 0100

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∨ (L ∧ K) ∨ ¬N

ложно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Пояснение.

Логическое "ИЛИ" ложно тогда и только тогда, когда ложны оба утверждения.

(K → M) = 0, (L ∧ K) ∨ ¬N = 0.

Применим преобразование импликации для первого выражения:

¬K ∨ M = 0 => K = 1, M = 0.

Рассмотрим второе выражение:

(L ∧ K) ∨ ¬N = 0 (см. результат первого выражения) => L ∨ ¬N = 0 => L = 0, N = 1.

Ответ: 1001.

Ответ: 1001

Укажите значения переменных K, L, M, N, при которых логическое выражение

(K → M) ∧ (K → ¬M) ∧ (¬K → (M ∧ ¬L ∧ N))

истинно. Ответ запишите в виде строки из четырех символов: значений переменных K, L, M и N (в указанном порядке). Так, например, строка 1101 соответствует тому, что K=1, L=1, M=0, N=1.

Пояснение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

1) (K → M) = 1 Применим преобразование импликации: ¬K ∨ M = 1

2) (K → ¬M) = 1 Применим преобразование импликации: ¬K ∨ ¬M = 1

Отсюда следует, что K = 0.

3) (¬K → (M ∧ ¬L ∧ N)) = 1 Применим преобразование импликации: K ∨ (M ∧ ¬L ∧ N) = 1 из того что K = 0 получаем:

M ∧ ¬L ∧ N = 1 => M = 1, L = 0, N = 1.

Ответ: 0011

Известно, что для целых чисел X, Y и Z истинно высказывание

(Z Чему равно Z, если X=25 и Y=48?

Пояснение.

Выполнив подстановку чисел получаем что Z = 47.

Обратим внимание, что это сложное высказывание состоит из трех простых

1) (Z 2) эти простые высказывания связаны операцией ∧ (И, конъюнкция), то есть, они должны выполняться одновременно.

3) из ¬(Z+1 24, а из ¬(Z+1 47.

4) из (Z Z Ответ: 47.

Ответ: 47

A, B и C – целые числа, для которых истинно высказывание:

(C Чему равно C, если A=45 и B=18?

Пояснение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

Подставим значения чисел в выражение:

1) (C (C 2) ¬(C+1 , C ≥ 44.

3) ¬(C+1 , C ≥ 17.

Из 2) и 1) следует, что C

Ответ: 44

¬(А = B) ∧ ((B A)) ∧ ((A 2C))

Чему равно A, если C = 8 и B = 18?.

Пояснение.

Логическое "И" истинно тогда и только тогда, когда истинны оба утверждения.

1) ¬(А = B) = 1, то есть А ≠ 18 = 1.

2) ((B A)) Применим преобразование импликации: (18 > A) ∨ (16 > A) = 1

3) (A 2C) Применим преобразование импликации: (A > 18) ∨ (A > 16) = 1

Из 2) и 3) следует, что (18 > A) и (A > 16), так как в противном случае возникает противоречие А = 17.

Ответ: 17

A, B и С – целые числа, для которых истинно высказывание

¬(А = B) ∧ ((A > B) → (C = B)) ∧ ((B > A) → (C = A))

Чему равно B, если A = 45 и C = 18?

Пояснение.

Логическое "И" истинно только тогда, когда истинны все высказывания.

Можно выделить различные способы решения систем логических уравнений. Это сведение к одному уравнению, построение таблицы истинности и декомпозиция.

Задача: Решить систему логических уравнений:

Рассмотрим метод сведения к одному уравнению . Данный метод предполагает преобразование логических уравнений, таким образом, чтобы правые их части были равны истинностному значению (то есть 1). Для этого применяют операцию логического отрицания. Затем, если в уравнениях есть сложные логические операции, заменяем их базовыми: «И», «ИЛИ», «НЕ». Следующим шагом объединяем уравнения в одно, равносильное системе, с помощью логической операции «И». После этого, следует сделать преобразования полученного уравнения на основе законов алгебры логики и получить конкретное решение системы.

Решение 1: Применяем инверсию к обеим частям первого уравнения:

Представим импликацию через базовые операции «ИЛИ», «НЕ»:

Поскольку левые части уравнений равны 1, можно объединить их с помощью операции “И” в одно уравнение, равносильное исходной системе:

Раскрываем первую скобку по закону де Моргана и преобразовываем полученный результат:

Полученное уравнение, имеет одно решение: A =0, B=0 и C=1.

Следующий способ – построение таблиц истинности . Поскольку логические величины имеют только два значения, можно просто перебрать все варианты и найти среди них те, при которых выполняется данная система уравнений. То есть, мы строим одну общую таблицу истинности для всех уравнений системы и находим строку с нужными значениями.

Решение 2: Составим таблицу истинности для системы:

0

0

1

1

0

1

Полужирным выделена строчка, для которой выполняются условия задачи. Таким образом, A=0, B=0 и C=1.

Способ декомпозиции . Идея состоит в том, чтобы зафиксировать значение одной из переменных (положить ее равной 0 или 1) и за счет этого упростить уравнения. Затем можно зафиксировать значение второй переменной и т.д.

Решение 3: Пусть A = 0, тогда:

Из первого уравнения получаем B =0, а из второго – С=1. Решение системы: A = 0, B = 0 и C = 1.

В ЕГЭ по информатике очень часто требуется определить количество решений системы логических уравнений, без нахождения самих решений, для этого тоже существуют определенные методы. Основной способ нахождения количества решений системы логических уравнений – замена переменных . Сначала необходимо максимально упростить каждое из уравнений на основе законов алгебры логики, а затем заменить сложные части уравнений новыми переменными и определить количество решений новой системы. Далее вернуться к замене и определить для нее количество решений.

Задача: Сколько решений имеет уравнение (A →B ) + (C →D ) = 1? Где A, B, C, D – логические переменные.

Решение: Введем новые переменные: X = A →B и Y = C →D . С учетом новых переменных уравнение запишется в виде: X + Y = 1.

Дизъюнкция верна в трех случаях: (0;1), (1;0) и (1;1), при этом X и Y является импликацией, то есть является истинной в трех случаях и ложной – в одном. Поэтому случай (0;1) будет соответствовать трем возможным сочетаниям параметров. Случай (1;1) – будет соответствовать девяти возможным сочетаниям параметров исходного уравнения. Значит, всего возможных решений данного уравнения 3+9=15.

Следующий способ определения количества решений системы логических уравнений – бинарное дерево . Рассмотрим данный метод на примере.

Задача: Сколько различных решений имеет система логических уравнений:

Приведенная система уравнений равносильна уравнению:

(x 1 x 2 )*(x 2 x 3 )*…*(x m -1 x m ) = 1.

Предположим, что x 1 – истинно, тогда из первого уравнения получаем, что x 2 также истинно, из второго - x 3 =1, и так далее до x m = 1. Значит набор (1; 1; …; 1) из m единиц является решением системы. Пусть теперь x 1 =0, тогда из первого уравнения имеем x 2 =0 или x 2 =1.

Когда x 2 истинно получаем, что остальные переменные также истинны, то есть набор (0; 1; …; 1) является решением системы. При x 2 =0 получаем, что x 3 =0 или x 3 =, и так далее. Продолжая до последней переменной, получаем, что решениями уравнения являются следующие наборы переменных (m +1 решение, в каждом решении по m значений переменных):

(1; 1; 1; …; 1)

(0; 1; 1; …; 1)

(0; 0; 0; …; 0)

Такой подход хорошо иллюстрируется с помощью построения бинарного дерева. Количество возможных решений – количество различных ветвей построенного дерева. Легко заметить, что оно равно m +1.

Дерево

Количество решений

x 1

x 2

x 3

В случае трудностей в рассужд ниях и построении де рева решений можно искать решение с использованием таблиц истинности , для одного – двух уравнений.

Перепишем систему уравнений в виде:

И составим таблицу истинности отдельно для одного уравнения:

x 1

x 2

(x 1 → x 2)

Составим таблицу истинности для двух уравнений:

x 1

x 2

x 3

x 1 → x 2

x 2 → x 3

(x 1 → x 2) * (x 2 → x 3)

Данной материал содержит презентацию, в которой представлены методы решения логических уравнений и систем логических уравнений в задании В15 (№ 23, 2015) ЕГЭ по информатике. Известно, что это задание является одним из самых сложных среди заданий ЕГЭ. Презентация может быть полезна при проведении уроков по теме "Логика" в профильных классах, а также при подготовке к сдаче ЕГЭ.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Решение задания В15 (системы логических уравнений) Вишневская М.П., МАОУ «Гимназия №3» 18 ноября 2013 г., г. Саратов

Задание В15 - одно из самых сложных в ЕГЭ по информатике!!! Проверяются умения: преобразовывать выражения, содержащие логические переменные; описывать на естественном языке множество значений логических переменных, при которых заданный набор логических переменных истинен; подсчитывать число двоичных наборов, удовлетворяющих заданным условиям. Самое сложное, т.к. нет формальных правил, как это сделать, требуется догадка.

Без чего не обойтись!

Без чего не обойтись!

Условные обозначения конъюнкция: A /\ B , A  B , AB , А &B, A and B дизъюнкция: A \ / B , A + B , A | B , А or B отрицание:  A , А, not A эквиваленция: A  В, A  B, A  B исключающее «или»: A  B , A xor B

Метод замены переменных Сколько существует различных наборов значений логических переменных х1, х2, …, х9, х10, которые удовлетворяют всем перечисленным ниже условиям: ((x1 ≡ x2) \/ (x3 ≡ x4)) /\ (¬(x1 ≡ x2) \/ ¬(x3 ≡ x4)) = 1 ((x3 ≡ x4) \/ (x5 ≡ x6)) /\ (¬(x3 ≡ x4) \/ ¬(x5 ≡ x6)) = 1 ((x5 ≡ x6) \/ (x7 ≡ x8)) /\ (¬(x5 ≡ x7) \/ ¬(x7 ≡ x8)) = 1 ((x7 ≡ x8) \/ (x9 ≡ x10)) /\ (¬(x7 ≡ x8) \/ ¬(x9 ≡ x10)) = 1 В ответе не нужно перечислять все различные наборы х1, х2, …, х9, х10, при которых выполняется данная система равенств. В качестве ответа необходимо указать количество таких наборов (демо-версия 2012 г.)

Решение Шаг 1. Упрощаем, выполнив замену переменных t1 = x1  x2 t2 = x3  x4 t3 = x5  x6 t4 = x7  x8 t5 = x9  x10 После упрощения: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) =1 (t2 \/ t3) /\ (¬t2 \/ ¬ t3) =1 (t3 \/ t4) /\ (¬t3 \/ ¬ t4) =1 (t4 \/ t5) /\ (¬t4 \/ ¬ t5) =1 Рассмотрим одно из уравнений: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) =1 Очевидно, оно =1 только если одна из переменных равна 0, а другая – 1. Воспользуемся формулой для выражения операции XOR через конъюнкцию и дизъюнкцию: (t1 \/ t2) /\ (¬t1 \/ ¬ t2) = t1  t2 = ¬(t1 ≡ t2) =1 ¬(t1 ≡ t2) =1 ¬(t2 ≡ t3) =1 ¬(t3 ≡ t4) =1 ¬(t4 ≡ t5) =1

Шаг2. Анализ системы ¬(t1 ≡ t2) =1 ¬(t2 ≡ t3) =1 ¬(t3 ≡ t4) =1 ¬(t4 ≡ t5) =1 t1 t2 t3 t4 t5 0 1 0 1 0 1 0 1 0 1 Т.к. tk = x2k-1 ≡ x2k (t1 = x1  x2 ,….), то каждому значению tk соответствует две пары значений x2k-1 и x2k , например: tk =0 соответствуют две пары - (0,1) и (1,0) , а tk =1 – пары (0,0) и (1,1).

Шаг3. Подсчет числа решений. Каждое t имеет 2 решения, количество t – 5. Т.о. для переменных t существует 2 5 = 32 решения. Но каждому t соответствует пара решений х, т.е. исходная система имеет 2*32 = 64 решения. Ответ: 64

Метод исключения части решений Сколько существует различных наборов значений логических переменных х1, х2, …, х5, y1,y2,… , y5 , которые удовлетворяют всем перечисленным ниже условиям: (x1→ x2)∧(x2→ x3)∧(x3→ x4)∧(x4→ x5) =1; (y1→ y2)∧(y2→ y3)∧(y3→ y4) ∧(y4→ y5) =1; y5→ x5 =1. В ответе не нужно перечислять все различные наборы х1, х2, …, х5, y 1 ,y2,… , y5, при которых выполняется данная система равенств. В качестве ответа необходимо указать количество таких наборов.

Решение. Шаг1. Последовательное решение уравнений х1 1 0 х2 1 0 1 х3 1 0 1 1 х4 1 0 1 1 1 х5 1 0 1 1 1 1 Первое уравнение – конъюнкция нескольких операций импликации, равна 1, т.е. каждая из импликаций истинна. Импликация ложна только в одном случае, когда 1  0, во всех других случаях (0  0, 0  1, 1  1) операция возвращает 1. Запишем это в виде таблицы:

Шаг1. Последовательное решение уравнений Т.о. получено 6 наборов решений для х1,х2,х3,х4,х5: (00000), (00001), (00011), (00111), (01111), (11111). Рассуждая аналогично, приходим к выводу, что для y1, y2, y3, y4, y5 существует такой же набор решений. Т.к. уравнения эти независимы, т.е. в них нет общих переменных, то решением этой системы уравнений (без учета третьего уравнения) будет 6*6= 36 пар «иксов» и «игреков». Рассмотрим третье уравнение: y5→ x5 =1 Решением являются пары: 0 0 0 1 1 1 Не является решением пара: 1 0

Сопоставим полученные решения Там, где y5 =1, не подходят x5=0. таких пар 5. Количество решений системы: 36-5= 31 . Ответ: 31 Понадобилась комбинаторика!!!

Метод динамического программирования Сколько различных решений имеет логическое уравнение x 1 → x 2 → x 3 → x 4 → x 5 → x 6 = 1, где x 1, x 2, …, x 6 – логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количеств о таких наборов.

Решение Шаг1. Анализ условия Слева в уравнении последовательно записаны операции импликации, приоритет одинаков. Перепишем: ((((X 1 → X 2) → X 3) → X 4) → X 5) → X 6 = 1 NB! Каждая следующая переменная зависит не от предыдущей, а от результата предыдущей импликации!

Шаг2. Выявление закономерности Рассмотрим первую импликацию, X 1 → X 2. Таблица истинности: X 1 X 2 X 1 → X 2 0 0 1 0 1 1 1 0 0 1 1 1 Из одного 0 получили 2 единицы, а из 1 получили один 0 и одну 1. Всего один 0 и три 1, это результат первой операции.

Шаг2. Выявление закономерности Подключив к результату первой операции x 3 , получим: F(x 1 ,x 2) x 3 F(x 1 ,x 2)  x 3 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 Из двух 0 – две 1, из каждой 1 (их 3) по одному 0 и 1 (3+3)

Шаг 3. Вывод формулы Т.о. можно составить формулы для вычисления количества нулей N i и количества единиц E i для уравнения с i переменными: ,

Шаг 4. Заполнение таблицы Заполним слева направо таблицу для i = 6, вычисляя число нулей и единиц по приведенным выше формулам; в таблице показано, как строится следующий столбец по предыдущему: : число переменных 1 2 3 4 5 6 Число нулей N i 1 1 3 5 11 21 Число единиц E i 1 2*1+1= 3 2*1+3= 5 11 21 43 Ответ: 43

Метод с использованием упрощений логических выражений Сколько различных решений имеет уравнение ((J → K) → (M  N  L))  ((M  N  L) → (¬ J  K))  (M → J) = 1 где J , K, L, M, N – логические переменные? В ответе не нужно перечислять все различные наборы значений J , K, L, M и N, при которых выполнено данное равенство. В качестве ответа Вам нужно указать количество таких наборов.

Решение Заметим, что J → K = ¬ J  K Введем замену переменных: J → K=А, M  N  L =В Перепишем уравнение с учетом замены: (A → B)  (B → A)  (M → J)=1 4. (A  B)  (M → J)= 1 5. Очевидно, что A  B при одинаковых значениях А и В 6. Рассмотрим последнюю импликацию M → J =1 Это возможно, если: M=J=0 M=0, J=1 M=J=1

Решение Т.к. A  B , то При M=J=0 получаем 1 + К=0. Нет решений. При M=0, J=1 получаем 0 + К=0, К=0, а N и L - любые, 4 решения: ¬ J  K = M  N  L K N L 0 0 0 0 0 1 0 1 0 0 1 1

Решение 10. При M=J=1 получаем 0+К=1 *N * L , или K=N*L, 4 решения: 11. Итого имеет 4+4=8 решений Ответ: 8 K N L 0 0 0 0 0 1 0 1 0 1 1 1

Источники информации: О.Б. Богомолова, Д.Ю. Усенков. В15: новые задачи и новое решение // Информатика, № 6, 2012, с. 35 – 39. К.Ю. Поляков. Логические уравнения // Информатика, № 14, 2011, с. 30-35. http://ege-go.ru/zadania/grb/b15/ , [ Электронный ресурс ] . http://kpolyakov.narod.ru/school/ege.htm , [ Электронный ресурс ] .


По завершению года оказалось, что только одно из трех предположений истинно. Какие подразделения получили по итогам года прибыль?

Решение. Запишем предположения из условия задачи в виде логических высказываний: «Получение прибыли подразделениемB не является необходимым условием для получения

прибыли подразделением A »:F 1 (A , B , C ) = A → B

«Получение прибыли хотя бы одним подразделений B иC не является достаточным для получения прибыли подразделениемA »:F 2 (A , B , C ) = (B + C ) → A

«Подразделения A иB не получат прибыль одновременно»:F 3 (A , B , C ) = A B

Из условия известно, что только одно из трех предположений истинно. Это значит, что мы должны найти какое из трех следующих логических выражений не является тождественно ложным:

1) F 1F 2F 3

2) F 1F 2F 3

3) F 1F 2F 3

1) (A→ B) ((B+ C) → A) (A↔ B) = A B(B C+ A) (A B+ A B) = 0

2) (A→ B) ((B+ C) → A) (A↔ B) = (A+ B) (A B+ A C) (A B+ A B) = A B C

3) (A→ B) ((B+ C) → A) (A B) = (A+ B) (B C+ A) (A B+ A B) = 0

Следовательно, по итогам годы истинным оказалось второе предположение, а первое и третье – ложными.

A = 0

F1 F2 F3 = A B C= 1

в том и только в том случае, когда B = 0 .

C = 1

Следовательно, что прибыль получит подразделение C , а подразделенияA иB прибыль не получат.

Решение логических уравнений

В текстах государственного централизованного тестирования есть задание (А8), в котором предлагается найти корень логического уравнения. Давайте разберем способы решения подобных заданий на примере.

Найти корень логического уравнения: (A + B )(X AB ) = B + X → A .

Первый способ решения – построение таблицы истинности. Построим таблицы истинности правой и левой части уравнения и посмотрим, при каком X , значения в последних столбцах этих таблиц совпадут.

F1 (A, B, X) = (A+ B)(X AB)

A + B

(A+ B)(X AB)

F 1 (A ,B ,X )

F2 (A, B, X) = B+ X→ A

X → A

F 2 (A ,B ,X )

X → A

X → A

Сравним полученные таблицы истинности и выберем те строки, в которых значения F 1 (A , B , X ) иF 2 (A , B , X ) совпадают.

F 1 (A ,B ,X )

F 2 (A ,B ,X )

Перепишем только выбранные строки, оставив только столбцы аргументов. Посмотрим на переменную X как на функцию отA иB .

Очевидно, что X = B → A .

Второй способ решения – заменить знак равенства в уравнении на знак эквиваленции, а затем упростить полученное логическое уравнение.

Для облегчения дальнейшей работы предварительно упростим правую и левую части логического уравнения и найдем их отрицания:

F1 = (A+ B)(X AB) = A+ B+ (X↔ AB) = A B+ X A B+ X A+ X B

F1 = (A+ B)(X AB) = (A+ B)(X A+ X B+ X A B) = X A B+ X A B+ X A B

F2 = B+ X→ A= B(X→ A) = B(X+ A) = X B+ A B F2 = B+ X→ A= B+ X+ A= B+ X A

Заменим в нашем логическом уравнении знак равенства на знак эквивалентности:

F1 ↔ F2 = F1 F2 + F1 F2 = (A B+ X A B+ X A+ X B) (X B+ A B) +

+ (X A B+ X A B+ X A B) (B+ X A) =

= (X A B+ X B+ X A B) + (X A B+ X A B) =

Перегруппируем логические слагаемые данного выражения, вынеся за скобку множители X иX .

X(A B) + X(B+ AB) = X(A B) + X(B+ A) =

Обозначим T = A B , тогда

X T+ X T= X↔ T.

Следовательно, чтобы логическое уравнение имеет решение: X = A B = B + A = B → A .

Логические элементы ЭВМ. Построение функциональных схем

Математическая логика с развитием ВТ оказалась в тесной взаимосвязи с вопросами конструирования и программирования вычислительной техники. Алгебра логики нашла широкое применение первоначально при разработке релейно-контактных схем . Первым фундаментальным исследованием, обратившим внимание инженеров, занимавшихся проектированием ЭВМ, на возможность анализа электрических цепей с помощью булевой алгебры была опубликована в декабре 1938 года статья американца Клода Шеннона «Символический анализ релейно-контактных схем». После этой статьи проектирование ЭВМ не обходилось без применения булевой алгебры.

Логический элемент - это схема, реализующая логические операции дизъюнкции, конъюнкции и инверсии. Рассмотрим реализацию логических элементов через электрические релейно-контактные схемы, знакомые вам из школьного курса физики.

Последовательное соединение контактов

Параллельное соединение контактов

Составим таблицу зависимостей состояния цепей от всевозможных состояний контактов. Введем обозначения: 1 – контакт замкнут, ток в цепи есть; 0 – контакт разомкнут, тока в цепи нет.

Состояние цепи с

Состояние цепи с параллельным

последовательным соединением

соединением

Как видно, цепь с последовательным соединением соответствует логической операции конъюнкция, так как ток в цепи появляется только при одновременном замыкании контактов A иB . Цепь с параллельным соединением соответствует логической операции дизъюнкция, так как ток в цепи отсутствует только в момент, когда оба контакта разомкнуты.

Логическая операция инверсии реализуется через контактную схему электромагнитного реле, принцип которого изучается в школьном курсе физики. Контакт x разомкнут, когдаx замкнут, и наоборот.

Использование релейно-контактных элементов для построения логических схем вычислительных машин не оправдало себя ввиду низкой надежности, больших габаритов, большого энергопотребления и низкого быстродействия. Появление электронных приборов (вакуумных и полупроводниковых) создало возможность построения логических элементов с быстродействием от 1 миллиона переключений в секунду и выше. Логические элементы на полупроводниках работают в режиме ключа аналогично электромагнитному реле. Вся теория, изложенная для контактных схем, переносится на полупроводниковые элементы. Логические элементы на полупроводниках характеризуются не состоянием контактов, а наличием сигналов на входе и выходе.

Рассмотрим логические элементы, реализующие основные логические операции:

Инвертор - реализует операцию отрицания или инверсию. У

инвертора один вход и один выход. Сигнал на выходе появляется

тогда, когда на входе его нет, и наоборот.

Конъюнктор -

X1 X2 ... Xn

реализует операцию конъюнкции.

У конъюнктора

один выход и не менее двух входов. Сигнал на

выходе появляется тогда и только тогда, когда на

все входы поданы сигналы.

X2 + ... Xn

Дизъюнктор - реализует операцию дизъюнкции. У

дизъюнктора один выход и не менее двух

Сигнал на выходе не появляется тогда и только тогда,

когда на все входы не поданы сигналы.

Построить

функциональную

F(X, Y, Z) = X(Y+ Z)

X + Z

схему, соответствующую функции:

& F(X, Y, Z)

Решение задач с использованием конъюнктивно-нормальной

и дизъюнктивно-нормальной форм

В задачниках по логике часто встречаются стандартные задачи, где нужно записать функцию, реализующую релейно-контактную схему, упростить ее и построить таблицу истинности для этой функции. А как решать обратную задачу? Дана произвольная таблица истинности, нужно построить функциональную или релейно-контактную схему. Этим вопросом мы и займемся сегодня.

Любую функцию алгебры логики можно представить комбинацией трех операций: конъюнкции, дизъюнкции и инверсии. Давайте разберемся, как это делается. Для этого запишем несколько определений.

Минтерм - это функция, образованная конъюнкцией некоторого числа переменных или их отрицаний. Минтерм принимает значение 1 при единственном из всех возможных наборов

аргументов, и значение 0 при всех остальных. Пример: x 1 x 2 x 3 x 4 .

Макстерм - это функция, образованная дизъюнкцией некоторого числа переменных или их отрицаний. Макстерм принимает значение 0 в одном из возможных наборов, и 1 при всех других.

Пример: x 1 + x 2 + x 3 .

Функция в дизъюнктивной нормальной форме (ДНФ) является логической суммой минтермов.

Пример: x 1x 2+ x 1x 2+ x 1x 2x 3.

Конъюнктивная нормальная форма (КНФ) является логическим произведением элементарных дизъюнкций (макстермов).

Пример: (x 1+ x 2+ x 3) (x 1+ x 2) .

Совершенной дизъюнктивно-нормальной формойназывается ДНФ, в каждом минтерме которой присутствуют все переменные или их отрицания.

Пример: x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3

Совершенной конъюктивно-нормальной формойназывается КНФ, в каждом макстерме которой присутствуют все переменные или их отрицания.

Пример: (x 1+ x 2+ x 3) (x 1+ x 2+ x 3)

Запись логической функции по таблице

Любая логическая функция может быть выражена в виде СДНФ или СКНФ. В качестве примера рассмотрим функцию f , представленную в таблице.

f(x1 , x2 , x3 )

Функции G0, G1, G4, G5, G7 – это минтермы (см. определение). Каждая из этих функций является произведением трех переменных или их инверсий и принимает значение 1 только в одной ситуации. Видно, что для того, чтобы получить 1 в значении функции f, нужен один минтерм. Следовательно, количество минтермов, составляющих СДНФ этой функции, равно количеству единиц в значении функции: f= G0+G1+G4+G5+G7. Таким образом, СДНФ имеет вид:

f (x 1, x 2, x 3) = x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3+ x 1x 2x 3.

Аналогично можно построить СКНФ. Количество сомножителей равно количеству нулей в значениях функции:

f (x 1, x 2, x 3) = (x 1+ x 2+ x 3) (x 1+ x 2+ x 3) (x 1+ x 2+ x 3) .

Таким образом, можно записать в виде формулы любую логическую функцию, заданную в виде таблицы.

Алгоритм построения СДНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СДНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 1.

2. Каждой такой строке поставить в соответствие конъюнкцию всех аргументов или их инверсий (минтерм). При этом аргумент, принимающий значение 0, входит в минтерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем дизъюнкцию всех полученных минтермов. Количество минтермов должно совпадать с количеством единиц логической функции.

Алгоритм построения СКНФ по таблице истинности

Дана таблица истинности некоторой функции. Для построения СКНФ необходимо выполнить следующую последовательность шагов:

1. Выбрать все строки таблицы, в которых функция принимает значение 0.

2. Каждой такой строке поставить в соответствие дизъюнкцию всех аргументов или их инверсий (макстерм). При этом аргумент, принимающий значение 1, входит в макстерм с отрицанием, а значение 1 – без отрицания.

3. Наконец, образуем конъюнкцию всех полученных макстермов. Количество макстермов должно совпадать с количеством нулей логической функции.

Если условиться из двух форм (СДНФ или СКНФ) отдавать предпочтение той, которая содержит меньше букв, то СДНФ предпочтительней, если среди значений функции таблицы истинности меньше единиц, СКНФ – если меньше нулей.

Пример. Дана таблица истинности логической функции от трех переменных. Построить логическую формулу, реализующую эту функцию.

F(A, B, C)

Выберем те строки в данной таблице истинности, в которых значения функции равна 0.

F(A, B, C) = (A+ B+ C) (A+ B+ C)

Проверим выведенную функцию, составив таблицу истинности.

Сравнив начальную и итоговую таблицу истинности можно сделать вывод, что логическая функция построена правильно.

Решение задач

1. Три преподавателя отбирают задачи для олимпиады. На выбор предлагается несколько задач. По каждой задаче каждый из преподавателей высказывает свое мнение: легкая (0) или трудная (1) задача. Задача включается в олимпиадное задание, если не менее двух преподавателей отметили ее как трудную, но если все три преподавателя считают ее трудной, то такая задача не включается в олимпиадное задание как слишком сложная. Составьте логическую схему устройства, которое будет выдавать на выходе 1, если задача включается в олимпиадное задание, и 0, если не включается.

Построим таблицу истинности искомой функции. У нас есть три входные переменные (три преподавателя). Следовательно, искомая функция будет функцией от трех переменных.

Анализируя условие задачи, получаем следующую таблицу истинности:

Строим СДНФ. F(A, B, C) = ABC+ ABC+ ABC

Теперь строим логическую схему этой функции.

B & 1F(A,B,C)

2. Городская олимпиада по базовому курсу информатики, 2007 год. Постройте схему электрической цепи для подъезда трехэтажного дома такую, чтобы выключателем на любом этаже можно было бы включить или выключить свет во всем доме.

Итак, у нас есть три выключателя, которыми мы должны включать и выключать свет. У каждого выключателя есть два состояния: верхнее (0) и нижнее (1). Предположим, что если все три выключателя в положении 0, свет в подъезде выключен. Тогда при переводе любого из трех выключателей в положение 1 свет в подъезде должен загореться. Очевидно, что при переводе любого другого выключателя в положение 1, свет в подъезде выключится. Если третий выключатель перевести в положение 1, свет в подъезде загорится. Строим таблицу истинности.

Тогда, F(A, B, C) = ABC+ ABC+ ABC+ ABC.

3. Условие изменения

значения логической функции

F(A, B, C) = C→

A + B

одновременном изменении аргументов B иC равно:

A → (B C)

(B C) → A

A(B C)

4) (B C) → A

A → (B C)

Примечание. Для успешного решения данной задачи вспомним следующие логические формулы:

x → y= x+ y x y= x y+ x y

x ↔ y= x y+ x y

Нам дана логическая функция от трех переменных F 1 (A , B , C ) = C → A + B = C + A B .

Изменим одновременно переменные B иC :F 2 (A , B , C ) = F 1 (A , B , C ) = C + A B . Построим таблицы истинности этих двух функций:

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (2-й и 3-й) функция не изменяет своего значения. Обратите внимание, что в этих строках переменнаяA не изменяет своего значения на противоположное, а переменныеB иC – изменяют.

Строим СКНФ функции по этим строкам:

F3 (A, B, C) = (A+ B+ C) (A+ B C) = A+ AB+ AC+ AB+ BC+ AC+ B C= .

A+ (B↔ C) = A+ B C= (B C) → A

Следовательно, искомый ответ – 4.

4. Условие изменения значения логической функции F (A , B , C ) = C + AB при одновременном изменении аргументовA иB равно:

1) C+ (A B)

C + (A B)

C(A B)

4) C(A B)

C → (A B)

F 1 (A ,B ,C )=

C + AB

F 2 (A ,B ,C )= F 1 (

C )= A

Строим таблицу истинности.

Анализируем полученную таблицу. Из восьми строк таблицы лишь в двух (1-й и 7-й) функция меняет свое значение. Обратите внимание, что в этих строках переменная С не меняет свое значение, а переменные A и B – меняют.

Строим СДНФ функции по этим строкам:

F3 (A, B, C) = A B C+ A B C= C(A B+ A B) = C(A↔ B) = C+ (A B)

Следовательно, искомый ответ – 2.

Использованная литература

1. Шапиро С.И. Решение логических и игровых задач (логико-психологические этюды). – М.: Радио и связь, 1984. – 152 с.

2. Шоломов Л.А. Основы теории дискретных логических и вычислительных устройств. – М.: Наука. Гл. ред. физ. - мат. лит., 1980. - 400 с.

3. Пухальский Г.И., Новосельцева Т.Я. Проектирование дискретных устройств на интегральных микросхемах.: Справочник. – М.: Радио и связь, 1990.

Носкин Андрей Николаевич,
учитель информатики
высшей квалификационной категории,
кандидат военных наук, доцент
ГБОУ Лицей №1575 город Москва

Оптимизированный метод отображения для решения задачи 23 из КИМ ЕГЭ по информатике и ИКТ

Одной из самой трудной задачей в КИМ ЕГЭ является задача 23, в которой надо найти количество различных наборов значений логических переменных, которые удовлетворяют указанному условию.
Данная задача является едва ли не самым сложным заданием КИМ ЕГЭ по информатике и ИКТ. С ним, как правило, справляются не более 5% экзаменуемых {1}.
Такой маленький процент учеников, которые справились с данным заданием объясняется следующим:
- ученики могут путать (забыть) знаки логических операций;
- математические ошибки в процессе выполнения расчетов;
- ошибки в рассуждениях при поиске решения;
- ошибки в процессе упрощения логических выражений;
- учителя рекомендуют решать данную задачу, после выполнения всей работы, так как вероятность допущения
ошибок очень велика, а «вес» задачи составляет всего лишь один первичный балл.
Кроме того, некоторые учителя сами с трудом решают данный тип задач и поэтому стараются решать с детьми более простые задачи.
Также усложняет ситуацию, что в данном блоке существует большое количество разнообразных задач и невозможно подобрать какое-то шаблонное решение.
Для исправление данной ситуации педагогическим сообществом дорабатываются основные две методики решения задач данного типа: решение с помощью битовых цепочек {2} и метод отображений {3}.
Необходимость доработки (оптимизации) данных методик обусловлена тем, что задачи постоянно видоизменяются как по структуре, так и по количеству переменных (только один тип переменных Х, два типа переменных Х и Y, три типа: X, Y, Z).
Сложность освоения данными методиками решения задач подтверждается тем, что на сайте К.Ю. Полякова существует разборов данного типа задач в количестве 38 штук{4}. В некоторых разборах приведены более одного типа решения задачи.
Последнее время в КИМ ЕГЭ по информатике встречаются задачи с двумя типа переменных X и Y.
Я оптимизировал метод отображения и предлагаю своим ученикам пользоваться усовершенствованным методом.
Это дает результат. Процент моих учеников, которые справляются с данной задачей варьируется до 43% от сдающих. Как правило, ежегодно у меня сдает ЕГЭ по информатике от 25 до 33 человек из всех 11-х классов.
До появления задач с двумя типами переменными метод отображения ученики использовали очень успешно, но после появления в логическом выражении Y, я стал замечать, что у детей перестали совпадать ответы с тестами. Оказалось, они не совсем четко стали представлять, как составить таблицу отображений с новым типом переменной. Тогда мне пришла мысль, что для удобства надо все выражение привести к одному типу переменной, как удобно детям.
Приведу более подробно данную методику. Для удобства буду ее рассматривать на примере системы логических выражений, приведенных в {4}.
Сколько различных решений имеет система логических уравнений

(x 1 ^ y 1) = (¬x 2 V ¬ y 2 )
(x 2 ^ y 2) = (¬ x 3 V ¬ y 3 )
...
(x 5 ^ y 5 ) = (¬ x 6 V ¬ y 6 )

где x 1 , …, x 6 , y 1 , …, y 6 , - логические переменные? В ответе не нужно перечислять все различные наборы значений переменных, при которых выполнено данное равенство. В качестве ответа нужно указать количество таких наборов.
Решение:
1. Из анализа системы логических уравнений мы видим, что присутствует 6 переменных Х и 6 переменных У . Так как любая из этих переменных может принимать только два значения (0 и 1), то заменим эти переменные на 12 однотипных переменных, например Z.
2. Теперь перепишем систему с новыми однотипными переменными. Сложность задачи будет заключаться во внимательной записи при замене переменных.

(z 1 ^ z 2) = (¬z 3 V ¬ z 4 )
(z 3 ^ z 4) = (¬ z 5 V ¬ z 6 )
...
(z 9 ^ z 10 ) = (¬ z 11 V ¬ z 12)


3. Построим таблицу, в которой переберем все варианты z 1 , z 2 , z 3 , z 4 , поскольку в первом логическом уравнении четыре переменных, то таблица будет иметь 16 строк (16=2 4); уберем из таблицы такие значения z 4 , при которых первое уравнение не имеет решения (зачеркнутые цифры).
0 0 0 0
1
1 0
1
1 0 0
1
1 0
1
1 0 0 0
1
1 0
1
1 0 0
1
1 0
1

4. Анализируя таблицу, строим правило отображения пар переменных (например, паре Z 1 Z 2 =00 соответствует пара Z 3 Z 4 = 11) .

5. Заполняем таблицу, вычисляя количество пар переменных, при котором система имеет решение.

6. Складываем все результаты: 9 + 9 + 9 + 27 = 54
7. Ответ: 54.
Приведенная выше оптимизированная методика решения задачи 23 из КИМ ЕГЭ позволила ученикам вновь обрести уверенность и решать успешно этот тип задачи.

Литература:

1. ФИПИ. Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2015 года по ИНФОРМАТИКЕ и ИКТ. Режим доступа: http://www.fipi.ru/sites/default/files/document/1442163533/informatika_i_ikt.pdf

2. К.Ю. Поляков, М.А. Ройтберг. Системы логических уравнений: решение с помощью битовых цепочек. Журнал Информатика, № 12, 2014, с. 4-12. Издательский дом "Первое сентября", г.Москва.
3. Е.А. Мирончик, Метод отображения. Журнал Информатика, № 10, 2013, с. 18-26. Издательский дом "Первое сентября", г.Москва.

Top