Линейная регрессия. Найдем параметры уравнения линейной регрессии и дадим экономическую интерпретацию коэффициента регрессии

Во время учебы студенты очень часто сталкиваются с разнообразными уравнениями. Одно из них - уравнение регрессии - рассмотрено в данной статье. Такой тип уравнения применяется специально для описания характеристики связи между математическими параметрами. Данный вид равенств используют в статистике и эконометрике.

Определение понятия регрессии

В математике под регрессией подразумевается некая величина, описывающая зависимость среднего значения совокупности данных от значений другой величины. Уравнение регрессии показывает в качестве функции определенного признака среднее значение другого признака. Функция регрессии имеет вид простого уравнения у = х, в котором у выступает зависимой переменной, а х - независимой (признак-фактор). Фактически регрессия выражаться как у = f (x).

Какие бывают типы связей между переменными

В общем, выделяется два противоположных типа взаимосвязи: корреляционная и регрессионная.

Первая характеризуется равноправностью условных переменных. В данном случае достоверно не известно, какая переменная зависит от другой.

Если же между переменными не наблюдается равноправности и в условиях сказано, какая переменная объясняющая, а какая - зависимая, то можно говорить о наличии связи второго типа. Для того чтобы построить уравнение линейной регрессии, необходимо будет выяснить, какой тип связи наблюдается.

Виды регрессий

На сегодняшний день выделяют 7 разнообразных видов регрессии: гиперболическая, линейная, множественная, нелинейная, парная, обратная, логарифмически линейная.

Гиперболическая, линейная и логарифмическая

Уравнение линейной регрессии применяют в статистике для четкого объяснения параметров уравнения. Оно выглядит как у = с+т*х+Е. Гиперболическое уравнение имеет вид правильной гиперболы у = с + т / х + Е. Логарифмически линейное уравнение выражает взаимосвязь с помощью логарифмической функции: In у = In с + т* In x + In E.

Множественная и нелинейная

Два более сложных вида регрессии - это множественная и нелинейная. Уравнение множественной регрессии выражается функцией у = f(х 1 , х 2 ...х с)+E. В данной ситуации у выступает зависимой переменной, а х - объясняющей. Переменная Е - стохастическая, она включает влияние других факторов в уравнении. Нелинейное уравнение регрессии немного противоречиво. С одной стороны, относительно учтенных показателей оно не линейное, а с другой стороны, в роли оценки показателей оно линейное.

Обратные и парные виды регрессий

Обратная - это такой вид функции, который необходимо преобразовать в линейный вид. В самых традиционных прикладных программах она имеет вид функции у = 1/с + т*х+Е. Парное уравнение регрессии демонстрирует взаимосвязь между данными в качестве функции у = f (x) + Е. Точно так же, как и в других уравнениях, у зависит от х, а Е - стохастический параметр.

Понятие корреляции

Это показатель, демонстрирующий существование взаимосвязи двух явлений или процессов. Сила взаимосвязи выражается в качестве коэффициента корреляции. Его значение колеблется в рамках интервала [-1;+1]. Отрицательный показатель говорит о наличии обратной связи, положительный - о прямой. Если коэффициент принимает значение, равное 0, то взаимосвязи нет. Чем ближе значение к 1 - тем сильнее связь между параметрами, чем ближе к 0 - тем слабее.

Методы

Корреляционные параметрические методы могут оценить тесноту взаимосвязи. Их используют на базе оценки распределения для изучения параметров, подчиняющихся закону нормального распределения.

Параметры уравнения линейной регрессии необходимы для идентификации вида зависимости, функции регрессионного уравнения и оценивания показателей избранной формулы взаимосвязи. В качестве метода идентификации связи используется поле корреляции. Для этого все существующие данные необходимо изобразить графически. В прямоугольной двухмерной системе координат необходимо нанести все известные данные. Так образуется поле корреляции. Значение описывающего фактора отмечаются вдоль оси абсцисс, в то время как значения зависимого - вдоль оси ординат. Если между параметрами есть функциональная зависимость, они выстраиваются в форме линии.

В случае если коэффициент корреляции таких данных будет менее 30 %, можно говорить о практически полном отсутствии связи. Если он находится между 30 % и 70 %, то это говорит о наличии связей средней тесноты. 100 % показатель - свидетельство функциональной связи.

Нелинейное уравнение регрессии так же, как и линейное, необходимо дополнять индексом корреляции (R).

Корреляция для множественной регрессии

Коэффициент детерминации является показателем квадрата множественной корреляции. Он говорит о тесноте взаимосвязи представленного комплекса показателей с исследуемым признаком. Он также может говорить о характере влияния параметров на результат. Уравнение множественной регрессии оценивают с помощью этого показателя.

Для того чтобы вычислить показатель множественной корреляции, необходимо рассчитать его индекс.

Метод наименьших квадратов

Данный метод является способом оценивания факторов регрессии. Его суть заключается в минимизировании суммы отклонений в квадрате, полученных вследствие зависимости фактора от функции.

Парное линейное уравнение регрессии можно оценить с помощью такого метода. Этот тип уравнений используют в случае обнаружения между показателями парной линейной зависимости.

Параметры уравнений

Каждый параметр функции линейной регрессии несет определенный смысл. Парное линейное уравнение регрессии содержит два параметра: с и т. Параметр т демонстрирует среднее изменение конечного показателя функции у, при условии уменьшения (увеличения) переменной х на одну условную единицу. Если переменная х - нулевая, то функция равняется параметру с. Если же переменная х не нулевая, то фактор с не несет в себе экономический смысл. Единственное влияние на функцию оказывает знак перед фактором с. Если там минус, то можно сказать о замедленном изменении результата по сравнению с фактором. Если там плюс, то это свидетельствует об ускоренном изменении результата.

Каждый параметр, изменяющий значение уравнения регрессии, можно выразить через уравнение. Например, фактор с имеет вид с = y - тх.

Сгруппированные данные

Бывают такие условия задачи, в которых вся информация группируется по признаку x, но при этом для определенной группы указываются соответствующие средние значения зависимого показателя. В таком случае средние значения характеризуют, каким образом изменяется показатель, зависящий от х. Таким образом, сгруппированная информация помогает найти уравнение регрессии. Ее используют в качестве анализа взаимосвязей. Однако у такого метода есть свои недостатки. К сожалению, средние показатели достаточно часто подвергаются внешним колебаниям. Данные колебания не являются отображением закономерности взаимосвязи, они всего лишь маскируют ее «шум». Средние показатели демонстрируют закономерности взаимосвязи намного хуже, чем уравнение линейной регрессии. Однако их можно применять в виде базы для поиска уравнения. Перемножая численность отдельной совокупности на соответствующую среднюю можно получить сумму у в пределах группы. Далее необходимо подбить все полученные суммы и найти конечный показатель у. Чуть сложнее производить расчеты с показателем суммы ху. В том случае если интервалы малы, можно условно взять показатель х для всех единиц (в пределах группы) одинаковым. Следует перемножить его с суммой у, чтобы узнать сумму произведений x на у. Далее все суммы подбиваются вместе и получается общая сумма ху.

Множественное парное уравнение регрессии: оценка важности связи

Как рассматривалось ранее, множественная регрессия имеет функцию вида у = f (x 1 ,x 2 ,…,x m)+E. Чаще всего такое уравнение используют для решения проблемы спроса и предложения на товар, процентного дохода по выкупленным акциям, изучения причин и вида функции издержек производства. Ее также активно применяют в самых разнообразным макроэкономических исследованиях и расчетах, а вот на уровне микроэкономики такое уравнение применяют немного реже.

Основной задачей множественной регрессии является построение модели данных, содержащих огромное количество информации, для того чтобы в дальнейшем определить, какое влияние имеет каждый из факторов по отдельности и в их общей совокупности на показатель, который необходимо смоделировать, и его коэффициенты. Уравнение регрессии может принимать самые разнообразные значения. При этом для оценки взаимосвязи обычно используется два типа функций: линейная и нелинейная.

Линейная функция изображается в форме такой взаимосвязи: у = а 0 + a 1 х 1 + а 2 х 2 ,+ ... + a m x m . При этом а2, a m , считаются коэффициентами «чистой» регрессии. Они необходимы для характеристики среднего изменения параметра у с изменением (уменьшением или увеличением) каждого соответствующего параметра х на одну единицу, с условием стабильного значения других показателей.

Нелинейные уравнения имеют, к примеру, вид степенной функции у=ах 1 b1 х 2 b2 ...x m bm . В данном случае показатели b 1 , b 2 ..... b m - называются коэффициентами эластичности, они демонстрируют, каким образом изменится результат (на сколько %) при увеличении (уменьшении) соответствующего показателя х на 1 % и при стабильном показателе остальных факторов.

Какие факторы необходимо учитывать при построении множественной регрессии

Для того чтобы правильно построить множественную регрессию, необходимо выяснить, на какие именно факторы следует обратить особое внимание.

Необходимо иметь определенное понимание природы взаимосвязей между экономическими факторами и моделируемым. Факторы, которые необходимо будет включать, обязаны отвечать следующим признакам:

  • Должны быть подвластны количественному измерению. Для того чтобы использовать фактор, описывающий качество предмета, в любом случае следует придать ему количественную форму.
  • Не должна присутствовать интеркорреляция факторов, или функциональная взаимосвязь. Такие действия чаще всего приводят к необратимым последствиям - система обыкновенных уравнений становится не обусловленной, а это влечет за собой ее ненадежность и нечеткость оценок.
  • В случае существования огромного показателя корреляции не существует способа для выяснения изолированного влияния факторов на окончательный результат показателя, следовательно, коэффициенты становятся неинтерпретируемыми.

Методы построения

Существует огромное количество методов и способов, объясняющих, каким образом можно выбрать факторы для уравнения. Однако все эти методы строятся на отборе коэффициентов с помощью показателя корреляции. Среди них выделяют:

  • Способ исключения.
  • Способ включения.
  • Пошаговый анализ регрессии.

Первый метод подразумевает отсев всех коэффициентов из совокупного набора. Второй метод включает введение множества дополнительных факторов. Ну а третий - отсев факторов, которые были ранее применены для уравнения. Каждый из этих методов имеет право на существование. У них есть свои плюсы и минусы, но они все по-своему могут решить вопрос отсева ненужных показателей. Как правило, результаты, полученные каждым отдельным методом, достаточно близки.

Методы многомерного анализа

Такие способы определения факторов базируются на рассмотрении отдельных сочетаний взаимосвязанных признаков. Они включают в себя дискриминантный анализ, распознание обликов, способ главных компонент и анализ кластеров. Кроме того, существует также факторный анализ, однако он появился вследствие развития способа компонент. Все они применяются в определенных обстоятельствах, при наличии определенных условий и факторов.

Парная линейная регрессия

ПРАКТИКУМ

Парная линейная регрессия: Практикум. –

Изучение эконометрики предполагает приобретение студентами опыта построения эконометрических моделей, принятия решений о спецификации и идентификации модели, выбора метода оценки параметров модели, оценки ее качества, интерпретации результатов, получения прогнозных оценок и пр. Практикум поможет студентам приобрести практические навыки в этих вопросах.

Утверждено редакционно-издательским советом

Составитель: М.Б. Перова, д.э.н., профессор

Общие положения

Эконометрическое исследование начинается с теории, устанавливающей связь между явлениями. Из всего круга факторов, влияющих на результативный признак, выделяются наиболее существенные факторы. После того, как было выявлено наличие взаимосвязи между изучаемыми признаками, определяется точный вид этой зависимости с помощью регрессионного анализа.

Регрессионный анализ заключается в определении аналитического выражения (в определении функции), в котором изменение одной величины (результативного признака) обусловлено влиянием независимой величины (факторного признака). Количественно оценить данную взаимосвязь можно с помощью построения уравнения регрессии или регрессионной функции.

Базисной регрессионной моделью является модель парной (однофакторной) регрессии. Парная регрессия – уравнение связи двух переменных у и х :

где – зависимая переменная (результативный признак);

–независимая, объясняющая переменная (факторный признак).

В зависимости от характера изменения у с изменением х различают линейные и нелинейные регрессии.

Линейная регрессия

Данная регрессионная функция называется полиномом первой степени и используется для описания равномерно развивающихся во времени процессов.

Наличие случайного члена (ошибки регрессии) связано с воздействием на зависимую переменную других неучтенных в уравнении факторов, с возможной нелинейностью модели, ошибками измерения, следовательно, появлениеслучайной ошибки уравнения регрессии может быть обусловлено следующими объективными причинами :

1) нерепрезентативность выборки. В модель парной регрессии включается фактор, не способный полностью объяснить вариацию результативного признака, который может быть подвержен влиянию многих других факторов (пропущенных переменных) в гораздо большей степени. Наприем, заработная плата может зависеть, кроме квалификации, от уровня образования, стажа работы, пола и пр.;

2) существует вероятность того, что переменные, участвующие в модели, могут быть измерены с ошибкой. Например, данные по расходам семьи на питание составляются на основании записей участников опросов, которые, как предполагается, тщательно фиксируют свои ежедневные расходы. Разумеется, при этом возможны ошибки.

На основе выборочного наблюдения оценивается выборочное уравнение регрессии (линия регрессии ):

,

где
– оценки параметров уравнения регрессии (
).

Аналитическая форма зависимости между изучаемой парой признаков (регрессионная функция) определяется с помощью следующих методов :

    На основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности. Например, если изучается зависимость между доходами населения и размером вкладов населения в банки, то очевидно, что связь прямая.

    Графический метод , когда характер связи оценивается визуально.

Эту зависимость можно наглядно увидеть, если построить график, отложив на оси абсцисс значения признака х , а на оси ординат – значения признака у . Нанеся на график точки, соответствующие значениям х и у , получим корреляционное поле :

а) если точки беспорядочно разбросаны по всему полю – это говорит об отсутствии зависимости между этими признаками;

б) если точки концентрируются вокруг оси, идущей от нижнего левого угла в верхний правый – то имеется прямая зависимость между признаками;

в) если точки концентрируются вокруг оси, идущей от верхнего левого угла в нижний правый – то обратная зависимость между признаками.

Если на корреляционном поле соединим точки отрезками прямой, то получим ломаную линию с некоторой тенденцией к росту. Это будет эмпирическая линия связи или эмпирическая линия регрессии . По ее виду можно судить не только о наличии, но и о форме зависимости между изучаемыми признаками.

Построение уравнения парной регрессии

Построение уравнения регрессии сводится к оценке ее параметров. Эти оценки параметров могут быть найдены различными способами. Одним их них является метод наименьших квадратов (МНК). Суть метода состоит в следующем. Каждому значению соответствует эмпирическое (наблюдаемое) значение. Построив уравнение регрессии, например уравнение прямой линии, каждому значениюбудет соответствовать теоретическое (расчетное) значение. Наблюдаемые значенияне лежат в точности на линии регрессии, т.е. не совпадают с. Разность между фактическим и расчетным значениями зависимой переменной называетсяостатком :

МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических , т.е. сумма квадратов остатков, минимальна:

Для линейных уравнений и нелинейных, приводимых к линейным, решается следующая система относительно а и b :

где n – численность выборки.

Решив систему уравнений, получим значения а и b , что позволяет записать уравнение регрессии (регрессионное уравнение):

где – объясняющая (независимая) переменная;

–объясняемая (зависимая) переменная;

Линия регрессии проходит через точку (,) и выполняются равенства:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы уравнений:

где – среднее значение зависимого признака;

–среднее значение независимого признака;

–среднее арифметическое значение произведения зависимого и независимого признаков;

–дисперсия независимого признака;

–ковариация между зависимым и независимым признаками.

Выборочной ковариацией двух переменных х , у называется средняя величина произведения отклонений этих переменных от своих средних

Параметр b при х имеет большое практическое значение и носит название коэффициента регрессии. Коэффициент регрессии показывает, на сколько единиц в среднем изменяется величина у х на 1 единицу своего измерения.

Знак параметра b в уравнении парной регрессии указывает на направление связи:

если
, то связь между изучаемыми показателями прямая, т.е. с увеличением факторного признаках увеличивается и результативный признак у , и наоборот;

если
, то связь между изучаемыми показателями обратная, т.е. с увеличением факторного признаках результативный признак у уменьшается, и наоборот.

Значение параметра а в уравнении парной регрессии в ряде случаев можно трактовать как начальное значение результативного признака у . Такая трактовка параметра а возможна только в том случае, если значение
имеет смысл.

После построения уравнения регрессии, наблюдаемые значения y можно представить как:

Остатки , как и ошибки, являются случайными величинами, однако они, в отличие от ошибок, наблюдаемы. Остаток есть та часть зависимой переменнойy , которую невозможно объяснить с помощью уравнения регрессии.

На основании уравнения регрессии могут быть вычислены теоретические значения у х для любых значений х .

В экономическом анализе часто используется понятие эластичности функции. Эластичность функции
рассчитывается как относительное изменениеy к относительному изменению x . Эластичность показывает, на сколько процентов изменяется функция
при изменении независимой переменной на 1%.

Поскольку эластичность линейной функции
не является постоянной величиной, а зависит отх , то обычно рассчитывается коэффициент эластичности как средний показатель эластичности.

Коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится величина результативного признака у при изменении факторного признака х на 1% от своего среднего значения:

где
– средние значения переменныхх и у в выборке.

Оценка качества построенной модели регрессии

Качество модели регрессии – адекватность построенной модели исходным (наблюдаемым) данным.

Чтобы измерить тесноту связи, т.е. измерить, насколько она близка к функциональной, нужно определить дисперсию, измеряющую отклонения у от у х и характеризующую остаточную вариацию, обусловленную прочими факторами. Они лежат в основе показателей, характеризующих качество модели регрессии.

Качество парной регрессии определяется с помощью коэффициентов, характеризующих

1) тесноту связи – индекса корреляции, парного линейного коэффициента корреляции;

2) ошибку аппроксимации;

3) качество уравнения регрессии и отдельных его параметров – средние квадратические ошибки уравнения регрессии в целом и отдельных его параметров.

Для уравнений регрессии любого вида определяется индекс корреляции , который характеризует только тесноту корреляционной зависимости, т.е. степень ее приближения к функциональной связи:

,

где – факторная (теоретическая) дисперсия;

–общая дисперсия.

Индекс корреляции принимает значения
, при этом,

если

если
– то связь между признакамих и у является функциональной, Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками. Если
, то связь можно считать тесной

Дисперсии, необходимые для вычисления показателей тесноты связи вычисляются:

Общая дисперсия , измеряющая общую вариацию за счет действия всех факторов:

Факторная (теоретическая) дисперсия, измеряющая вариацию результативного признака у за счет действия факторного признака х :

Остаточная дисперсия , характеризующая вариацию признака у за счет всех факторов, кроме х (т.е. при исключенном х ):

Тогда по правилу сложения дисперсий:

Качество парной линейной регрессии может быть определено также с помощью парного линейного коэффициента корреляции :

,

где
– ковариация переменныхх и у ;

–среднеквадратическое отклонение независимого признака;

–среднеквадратическое отклонение зависимого признака.

Линейный коэффициент корреляции характеризует тесноту и направление связи между изучаемыми признаками. Он измеряется в пределах [-1; +1]:

если
– то связь между признаками прямая;

если
– то связь между признаками обратная;

если
– то связь между признаками отсутствует;

если
или
– то связь между признаками является функциональной, т.е. характеризуется полным соответствием междух и у . Чем ближе к 1, тем более тесной считается связь между изучаемыми признаками.

Если индекс корреляции (парный линейный коэффициент корреляции) возвести в квадрат, то получим коэффициент детерминации.

Коэффициент детерминации – представляет собой долю факторной дисперсии в общей и показывает, на сколько процентов вариация результативного признака у объясняется вариацией факторного признака х :

Он характеризует не всю вариацию у от факторного признака х , а лишь ту ее часть, которая соответствует линейному уравнению регрессии, т.е. показывает удельный вес вариации результативного признака, линейно связанной с вариацией факторного признака.

Величина
– доля вариации результативного признака, которую модель регрессии учесть не смогла.

Рассеяние точек корреляционного поля может быть очень велико, и вычисленное уравнение регрессии может давать большую погрешность в оценке анализируемого показателя.

Средняя ошибка аппроксимации показывает среднее отклонение расчетных значений от фактических:

Максимально допустимое значение 12–15%.

Мерой разброса зависимой переменной вокруг линии регрессии служит стандартная ошибка.Для всей совокупности наблюдаемых значений рассчитывается стандартная (среднеквадратическая) ошибка уравнения регрессии , которая представляет собой среднее квадратическое отклонение фактических значений у относительно теоретических значений, рассчитанных по уравнению регрессии у х .

,

где
– число степеней свободы;

m – число параметров уравнения регрессии (для уравнения прямой m =2).

Оценить величину средней квадратической ошибки можно сопоставив ее

а) со средним значение результативного признака у ;

б) со средним квадратическим отклонением признака у :

если
, то использование данного уравнения регрессии является целесообразным.

Отдельно оцениваются стандартные (среднеквадратические) ошибки параметров уравнения и индекса корреляции :

;
;
.

х – среднее квадратическое отклонение х .

Проверка значимости уравнения регрессии и показателей тесноты связи

Чтобы построенную модель можно было использовать для дальнейших экономических расчетов, проверки качества построенной модели недостаточно. Необходимо также проверить значимость (существенность) полученных с помощью метода наименьших квадратов оценок уравнения регрессии и показателя тесноты связи, т.е. необходимо проверить их на соответствие истинным параметрам взаимосвязи.

Это связано с тем, что исчисленные по ограниченной совокупности показатели сохраняют элемент случайности, свойственный индивидуальным значениям признака. Поэтому они являются лишь оценками определенной статистической закономерности. Необходима оценка степени точности и значимости (надежности, существенности) параметров регрессии. Под значимостью понимают вероятность того, что значение проверяемого параметра не равно нулю, не включает в себя величины противоположных знаков.

Проверка значимости – проверка предположения того, что параметры отличаются от нуля.

Оценка значимости парного уравнения регрессии сводится к проверке гипотез о значимости уравнения регрессии в целом и отдельных его параметров (a , b ), парного коэффициента детерминации или индекса корреляции.

В этом случае могут быть выдвинуты следующие основные гипотезы H 0 :

1)
– коэффициенты регрессии являются незначимыми и уравнение регрессии также является незначимым;

2)
– парный коэффициент детерминации незначим и уравнение регрессии также является незначимым.

Альтернативной (или обратной) выступают следующие гипотезы:

1)
– коэффициенты регрессии значимо отличаются от нуля, и построенное уравнение регрессии является значимым;

2)
– парный коэффициент детерминации значимо отличаются от нуля и построенное уравнение регрессии является значимым.

Проверка гипотезы о значимости уравнения парной регрессии

Для проверки гипотезы о статистической незначимости уравнения регрессии в целом и коэффициента детерминации используется F -критерий (критерий Фишера ):

или

где k 1 = m –1 ; k 2 = n m – число степеней свободы;

n – число единиц совокупности;

m – число параметров уравнения регрессии;

–факторная дисперсия;

–остаточная дисперсия.

Гипотеза проверяется следующим образом:

1) если фактическое (наблюдаемое) значение F -критерия больше критического (табличного) значения данного критерия
, то с вероятностью
основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации отвергается, и уравнение регрессии признается значимым;

2) если фактическое (наблюдаемое) значение F-критерия меньше критического значения данного критерия
, то с вероятностью (
) основная гипотеза о незначимости уравнения регрессии или парного коэффициента детерминации принимается, и построенное уравнение регрессии признается незначимым.

Критическое значение F -критерия находится по соответствующим таблицам в зависимости от уровня значимости и числа степеней свободы
.

Число степеней свободы – показатель, который определяется как разность между объемом выборки (n ) и числом оцениваемых параметров по данной выборке (m ). Для модели парной регрессии число степеней свободы рассчитывается как
, так как по выборке оцениваются два параметра (
).

Уровень значимости – величина, определяемая
,

где – доверительная вероятность попадания оцениваемого параметра в доверительный интервал. Обычно принимается 0,95. Таким образом– это вероятность того, что оцениваемый параметр не попадет в доверительный интервал, равная 0,05 (5%) .

Тогда в случае оценки значимости уравнения парной регрессии критическое значение F-критерия вычисляется как
:

.

Проверка гипотезы о значимости параметров уравнения парной регрессии и индекса корреляции

При проверке значимости параметров уравнения (предположения того, что параметры отличаются от нуля) выдвигается основная гипотеза о незначимости полученных оценок (
. В качестве альтернативной (обратной) выдвигается гипотеза о значимости параметров уравнения (
).

Для проверки выдвинутых гипотез используется t -критерий (t -статистика) Стьюдента . Наблюдаемое значение t -критерия сравнивается со значением t -критерия, определяемого по таблице распределения Стьюдента (критическим значением). Критическое значение t -критерия
зависит от двух параметров: уровня значимостии числа степеней свободы
.

Выдвинутые гипотезы проверяются следующим образом:

1) если модуль наблюдаемого значения t -критерия больше критического значения t -критерия, т.е.
, то с вероятностью
основную гипотезу о незначимости параметров регрессии отвергают, т.е. параметры регрессии не равны 0;

2) если модуль наблюдаемого значения t -критерия меньше или равен критическому значению t -критерия, т.е.
, то с вероятностью
основная гипотеза о незначимости параметров регрессии принимается, т.е. параметры регрессии почти не отличаются от 0 или равны 0.

Оценка значимости коэффициентов регрессии с помощью критерия Стьюдента проводится путем сопоставления их оценок с величиной стандартной ошибки:

;

Для оценки статистической значимости индекса (линейного коэффициента) корреляции применяется также t -критерий Стьюдента.

Тема: Элементы теории корреляции

Объекты ряда генеральных совокупностей обладают несколькими подлежащими изучению признаками Х, У, ..., которые можно интерпретировать как систему взаимосвязанных величин. Примерами могут служить: масса животного и количество гемоглабина в крови, рост мужчины и объем грудной клетки, увеличение рабочих мест в помещении и уровень заболеваемости вирусными инфекциями, количество вводимого препарата и концентрация его в крови и т.д.

Очевидно, что между этими величинами существует связь, но она не может быть строгой фукциональной зависимостью, так как на изменение одной из величин влияет не только изменение второй величины, но и другие факторы. В таких случаях говорят, что две величины связаны стохастической (т.е. случайной) зависимостью. Мы будем изучать частный случай стохастической зависимости – корреляционную зависимость .

ОПРЕДЕЛЕНИЕ: стохастической , если на изменение одной из них влияет не только изменение второй величины, но и другие факторы.

ОПРЕДЕЛЕНИЕ: Зависимость случайных величин называют статистической, если изменения одной из них приводит к изменению закона распределения другой.

ОПРЕДЕЛЕНИЕ: Если изменение одной из случайных величин влечет изменение среднего другой случайной величины, то статистическую зависимость называют корреляционной.

Примерами корреляционной зависимости являются связи между:

Массой тела и ростом;

    дозой ионизирующего излучения и числом мутаций;

    пигментом волос человека и цветом глаз;

    показателями уровня жизни населения и процентом смертности;

    количеством пропущенных студентами лекций и оценкой на экзамене и т.д.

Именно корреляционные зависимости наиболее часто встречаются в природе в силу взаимовлияния и тесного переплетения огромного множества самых различных факторов, определяющих значения изучаемых показателей.

Результаты наблюдения, проведенные над тем или иным биологическим объктом по корреляционно связанным признакам У и Х можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками.

Если эту связь можно будет апроксимировать некоторой кривой, то можно будет прогнозировать изменение одного из параметров при целенаправленном изменении другого параметра.

Корреляционную зависимость от
можно описать с помощью уравнения вида

(1)

г
де
условное среднее величины , соответствующее значениювеличины
, а
некоторая функция. Уравнение (1) называется на
.

Рис.1. Линейная регрессия значима. Модель
.

Функцию
называютвыборочной регрессией на
, а ее график –выборочной линией регрессии на
.

Совершенно аналогично выборочным уравнением регрессии
на является уравнение
.

В зависимости от вида уравнения регрессии и формы соответствующей линии регрессии определяют форму корреляционной зависимости между рассматриваемыми величинами – линейной, квадратической, показательной, экспоненциальной.

Важнейшим является вопрос выбора вида функции регрессии
[или
], например линейная или нелинейная (показательная, логарифмическая и т.д.)

На практике вид функции регрессии можно определить построив на координатной плоскости множество точек, соответствующих всем имеющимся парам наблюдений (
).

Рис. 2. Линейная регрессия незначима. Модель
.

Р
ис. 3. Нелинейная модель
.

Например, на рис.1. видна тенденция роста значений с ростом
, при этом средние значениярасполагается визуально на прямой. Имеет смысл использовать линейную модель (вид зависимостиот
принято называть моделью) зависимостиот
.

На рис.2. средние значения не зависят от, следовательно линейная регрессия незначима (функция регрессии постоянна и равна).

На рис. 3. прослеживается тенденция нелинейности модели.

Примеры прямолинейной зависимости:

    увеличение количество потребляемого йода и снижение показателя заболеваемости зобом,

    увеличение стажа рабочего и повышение производительности.

Примеры криволинейной зависимости:

    с увеличением осадков – увеличивается урожай, но это происходит до определенного предела осадков. После критической точки осадки уже оказываются излишними, почва заболачивается и урожай снижается,

    связь между дозой хлора, примененной для обеззараживания воды и количеством бактерий в 1 мл. воды. С увеличением дозы хлора количество бактерий в воде снижается, но по достижению критической точки количество бактерий будет оставаться постоянным (или совсем отсутствовать), как бы мы не увеличивали дозу хлора.

Линейная регрессия

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости от Х (или Х от У), например, линейную модель
, необходимо определить конкретные значения коэффициентов модели.

При различных значениях а и
можно построить бесконечное число зависимостей вида
т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Метод наименьших квадратов (мнк)

Линейную функцию
ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используемметод наименьших квадратов.

Рис.4. Пояснение к оценке коэффициентов методом наименьших квадратов

Обозначим: - значение, вычисленное по уравнению

- измеренное значение,

- разность между измеренными и вычисленными по уравнению значениям,

.

В методе наименьших квадратов требуется, чтобы , разность между измеренными и вычисленными по уравнению значениям , была минимальной. Следовательно, находимо подобрать коэффициентыа и так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Это условие достигается если параметры а и будут вычислены по формулам:

называют коэффициентом регрессии ; называютсвободным членом уравнения регрессии.

Полученная прямая является оценкой для теоретической линии регрессии. Имеем

Итак,
являетсяуравнением линейной регрессии.

Регрессия может быть прямой
и обратной
.

ОПРЕДЕЛЕНИЕ: Обратная регрессия означает, что при росте одного параметра, значения другого параметра уменьшаются.

х - называется предиктором - независимой или объясняющей переменной.

Для данной величины х, Y — значение переменной у (называемой зависимой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а - свободный член (пересечение) линии оценки; это значение Y, когда х = 0.

b - угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например: при увеличении температуры тела человека на 1 о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.


Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r 2). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признака-результата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Пример

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид:

САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115) = 101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) = 108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx 1 +b 2 x 2 +.... + b n х n

Можно интересоваться результатом влияния нескольких независимых переменных х 1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример

Поскольку между ростом и массой тела ребёнка существует сильная зависимость, можно поинтересоваться, изменяется ли также соотно-шение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД = 79,44 - (0,03 х рост) + (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 - мальчик, 1 - девочка)

Согласно этому уравнению, девочка, рост которой 115 см и масса тела 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 - (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь» = 1, «не имеет болезни» = 0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице.

Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии — натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx 1 +b 2 x 2 +.... + b n х n

logit (р) — оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а — оценка константы (свободный член, пересечение);

b 1 , b 2 ,... ,b n — оценки коэффициентов логистической регрессии.

1. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсона?

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?

Понятие регрессии . Зависимость между переменными величинами x и y может быть описана разными способами. В частности, любую форму связи можно выразить уравнением общего вида , гдеy рассматривается в качестве зависимой переменной, или функции от другой – независимой переменной величины x, называемой аргументом . Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т.д. Изменение функции в зависимости от изменения одного или нескольких аргументов называется регрессией . Все средства, применяемые для описания корреляционных связей, составляет содержание регрессионного анализа .

Для выражения регрессии служат корреляционные уравнения, или уравнения регрессии, эмпирические и теоретически вычисленные ряды регрессии, их графики, называемые линиями регрессии, а также коэффициенты линейной и нелинейной регрессии.

Показатели регрессии выражают корреляционную связь двусторонне, учитывая изменение усредненных значений признакаY при изменении значений x i признака X , и, наоборот, показывают изменение средних значений признакаX по измененным значениям y i признака Y . Исключение составляют временные ряды, или ряды динамики, показывающие изменение признаков во времени. Регрессия таких рядов является односторонней.

Различных форм и видов корреляционных связей много. Задача сводится к тому, чтобы в каждом конкретном случае выявить форму связи и выразить ее соответствующим корреляционным уравнением, что позволяет предвидеть возможные изменения одного признака Y на основании известных изменений другого X , связанного с первым корреляционно.

12.1 Линейная регрессия

Уравнение регрессии. Результаты наблюдений, проведенных над тем или иным биологическим объектом по корреляционно связанным признакам x и y , можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками. Довольно часто эта связь выглядит в виде прямой или может быть аппроксимирована прямой линией.

Линейная зависимость между переменными x и y описывается уравнением общего вида , гдеa, b, c, d, … – параметры уравнения, определяющие соотношения между аргументами x 1 , x 2 , x 3 , …, x m и функций .

В практике учитывают не все возможные, а лишь некоторые аргументы, в простейшем случае – всего один:

В уравнении линейной регрессии (1) a – свободный член, а параметр b определяет наклон линии регрессии по отношению к осям прямоугольных координат. В аналитической геометрии этот параметр называют угловым коэффициентом , а в биометрии – коэффициентом регрессии . Наглядное представление об этом параметре и о положении линий регрессии Y по X и X по Y в системе прямоугольных координат дает рис.1.

Рис. 1 Линии регрессии Y по X и X поY в системе

прямоугольных координат

Линии регрессии, как показано на рис.1, пересекаются в точке О (,), соответствующей средним арифметическим значениям корреляционно связанных друг с другом признаковY и X . При построении графиков регрессии по оси абсцисс откладывают значения независимой переменной X, а по оси ординат – значения зависимой переменной, или функции Y. Линия АВ, проходящая через точку О (,) соответствует полной (функциональной) зависимости между переменными величинамиY и X , когда коэффициент корреляции . Чем сильнее связь междуY и X , тем ближе линии регрессии к АВ, и, наоборот, чем слабее связь между этими величинами, тем более удаленными оказываются линии регрессии от АВ. При отсутствии связи между признаками линии регрессии оказываются под прямым углом по отношению друг к другу и .

Поскольку показатели регрессии выражают корреляционную связь двусторонне, уравнение регрессии (1) следует записывать так:

По первой формуле определяют усредненные значения при изменении признакаX на единицу меры, по второй – усредненные значения при изменении на единицу меры признакаY .

Коэффициент регрессии. Коэффициент регрессии показывает, насколько в среднем величина одного признака y изменяется при изменении на единицу меры другого, корреляционно связанного с Y признака X . Этот показатель определяют по формуле

Здесь значения s умножают на размеры классовых интервалов λ , если их находили по вариационным рядам или корреляционным таблицам.

Коэффициент регрессии можно вычислить минуя расчет средних квадратичных отклонений s y и s x по формуле

Если же коэффициент корреляции неизвестен, коэффициент регрессии определяют следующим образом:

Связь между коэффициентами регрессии и корреляции. Сравнивая формулы (11.1) (тема 11) и (12.5), видим: в их числителе одна и та же величина , что указывает на наличие связи между этими показателями. Эта связь выражается равенством

Таким образом, коэффициент корреляции равен средней геометрической из коэффициентов b yx и b xy . Формула (6) позволяет, во-первых, по известным значениям коэффициентов регрессии b yx и b xy определять коэффициент регрессии R xy , а во-вторых, проверять правильность расчета этого показателя корреляционной связи R xy между варьирующими признаками X и Y .

Как и коэффициент корреляции, коэффициент регрессии характеризует только линейную связь и сопровождается знаком плюс при положительной и знаком минус при отрицательной связи.

Определение параметров линейной регрессии. Известно, что сумма квадратов отклонений вариант x i от средней есть величина наименьшая, т.е.. Эта теорема составляет основу метода наименьших квадратов. В отношении линейной регрессии [см. формулу (1)] требованию этой теоремы удовлетворяет некоторая система уравнений, называемыхнормальными :

Совместное решение этих уравнений относительно параметров a и b приводит к следующим результатам:

;

;

, откуда и.

Учитывая двусторонний характер связи между переменными Y и X , формулу для определения параметра а следует выразить так:

и . (7)

Параметр b , или коэффициент регрессии, определяют по следующим формулам:

Построение эмпирических рядов регрессии. При наличии большого числа наблюдений регрессионный анализ начинается с построения эмпирических рядов регрессии. Эмпирический ряд регрессии образуется путем вычисления по значениям одного варьирующего признака X средних значений другого, связанного корреляционно сX признака Y . Иными словами, построение эмпирических рядов регрессии сводится к нахождению групповых средних ииз соответствующих значений признаковY и X.

Эмпирический ряд регрессии – это двойной ряд чисел, которые можно изобразить точками на плоскости, а затем, соединив эти точки отрезками прямой, получить эмпирическую линию регрессии. Эмпирические ряды регрессии, особенно их графики, называемые линиями регрессии , дают наглядное представление о форме и тесноте корреляционной зависимости между варьирующими признаками.

Выравнивание эмпирических рядов регрессии. Графики эмпирических рядов регрессии оказываются, как правило, не плавно идущими, а ломаными линиями. Это объясняется тем, что наряду с главными причинами, определяющими общую закономерность в изменчивости коррелируемых признаков, на их величине сказывается влияние многочисленных второстепенных причин, вызывающих случайные колебания узловых точек регрессии. Чтобы выявить основную тенденцию (тренд) сопряженной вариации коррелируемых признаков, нужно заменить ломанные линии на гладкие, плавно идущие линии регрессии. Процесс замены ломанных линий на плавно идущие называют выравниванием эмпирических рядов и линий регрессий .

Графический способ выравнивания. Это наиболее простой способ, не требующий вычислительной работы. Его сущность сводится к следующему. Эмпирический ряд регрессии изображают в виде графика в системе прямоугольных координат. Затем визуально намечаются средние точки регрессии, по которым с помощью линейки или лекала проводят сплошную линию. Недостаток этого способа очевиден: он не исключает влияние индивидуальных свойств исследователя на результаты выравнивания эмпирических линий регрессии. Поэтому в тех случаях, когда необходима более высокая точность при замене ломанных линий регрессии на плавно идущие, используют другие способы выравнивания эмпирических рядов.

Способ скользящей средней. Суть этого способа сводится к последовательному вычислению средних арифметических из двух или трех соседних членов эмпирического ряда. Этот способ особенно удобен в тех случаях, когда эмпирический ряд представлен большим числом членов, так что потеря двух из них – крайних, что неизбежно при этом способе выравнивания, заметно не отразится на его структуре.

Метод наименьших квадратов. Этот способ предложен в начале XIX столетия А.М. Лежандром и независимо от него К. Гауссом. Он позволяет наиболее точно выравнивать эмпирические ряды. Этот метод, как было показано выше, основан на предположении, что сумма квадратов отклонений вариант x i от их средней есть величина минимальная, т.е.. Отсюда и название метода, который применяется не только в экологии, но и в технике. Метод наименьших квадратов объективен и универсален, его применяют в самых различных случаях при отыскании эмпирических уравнений рядов регрессии и определении их параметров.

Требование метода наименьших квадратов заключается в том, что теоретические точки линии регрессии должны быть получены таким образом, чтобы сумма квадратов отклонений от этих точек для эмпирических наблюденийy i была минимальной, т.е.

Вычисляя в соответствии с принципами математического анализа минимум этого выражения и определенным образом преобразуя его, можно получить систему так называемых нормальных уравнений , в которых неизвестными величинами оказываются искомые параметры уравнения регрессии, а известные коэффициенты определяются эмпирическими величинами признаков, обычно суммами их значений и их перекрестных произведений.

Множественная линейная регрессия. Зависимость между несколькими переменными величинами принято выражать уравнением множественной регрессии, которая может быть линейной и нелинейной . В простейшем виде множественная регрессия выражается уравнением с двумя независимыми переменными величинами (x , z ):

где a – свободный член уравнения; b и c – параметры уравнения. Для нахождения параметров уравнения (10) (по способу наименьших квадратов) применяют следующую систему нормальных уравнений:

Ряды динамики. Выравнивание рядов. Изменение признаков во времени образует так называемые временные ряды или ряды динамики . Характерной особенностью таких рядов является то, что в качестве независимой переменной X здесь всегда выступает фактор времени, а зависимой Y – изменяющийся признак. В зависимости от рядов регрессии зависимость между переменными X и Y носит односторонний характер, так как фактор времени не зависит от изменчивости признаков. Несмотря на указанные особенности, ряды динамики можно уподобить рядам регрессии и обрабатывать их одними и теми же методами.

Как и ряды регрессии, эмпирические ряды динамики несут на себе влияние не только основных, но и многочисленных второстепенных (случайных) факторов, затушевывающих ту главную тенденцию в изменчивости признаков, которая на языке статистики называют трендом .

Анализ рядов динамики начинается с выявления формы тренда. Для этого временной ряд изображают в виде линейного графика в системе прямоугольных координат. При этом по оси абсцисс откладывают временные точки (годы, месяцы и другие единицы времени), а по оси ординат – значения зависимой переменной Y. При наличии линейной зависимости между переменными X и Y (линейного тренда) для выравнивания рядов динамики способом наименьших квадратов наиболее подходящим является уравнение регрессии в виде отклонений членов ряда зависимой переменной Y от средней арифметической ряда независимой переменнойX:

Здесь – параметр линейной регрессии.

Числовые характеристики рядов динамики. К числу основных обобщающих числовых характеристик рядов динамики относят среднюю геометрическую и близкую к ней среднюю арифметическуювеличины. Они характеризуют среднюю скорость, с какой изменяется величина зависимой переменной за определенные периоды времени:

Оценкой изменчивости членов ряда динамики служит среднее квадратическое отклонение . При выборе уравнений регрессии для описания рядов динамики учитывают форму тренда, которая может быть линейной (или приведена к линейной) и нелинейной. О правильности выбора уравнения регрессии обычно судят по сходству эмпирически наблюденных и вычисленных значений зависимой переменной. Более точным в решении этой задачи является метод дисперсионного анализа регрессии (тема 12 п.4).

Корреляция рядов динамики. Нередко приходится сопоставлять динамику параллельно идущих временных рядов, связанных друг с другом некоторыми общими условиями, например выяснить связь между производством сельскохозяйственной продукции и ростом поголовья скота за определенный промежуток времени. В таких случаях характеристикой связи между переменными X и Y служит коэффициент корреляции R xy (при наличии линейного тренда).

Известно, что тренд рядов динамики, как правило, затушевывается колебаниями членов ряда зависимой переменной Y. Отсюда возникает задача двоякого рода: измерение зависимости между сопоставляемыми рядами, не исключая тренд, и измерение зависимости между соседними членами одного и того же ряда, исключая тренд. В первом случае показателем тесноты связи между сопоставляемыми рядами динамики служит коэффициент корреляции (если связь линейна), во втором – коэффициент автокорреляции . Эти показатели имеют разные значения, хотя и вычисляются по одним и тем же формулам (см. тему 11).

Нетрудно заметить, что на значении коэффициента автокорреляции сказывается изменчивость членов ряда зависимой переменной: чем меньше члены ряда отклоняются от тренда, тем выше коэффициент автокорреляции, и наоборот.


Top