Магия физики или как заставить воду подниматься вверх (видео). Физические опыты для детей - вода течет вверх

Этот простой опыт хорошо иллюстрирует, как происходит процесс впитывания жидкости твердым телом, а именно бумажной салфеткой и х/б веревочкой.

Суть опыта:

Для опыта вам понадобится:

  • бумажная салфетка
  • два больших пластиковых прозрачных стаканчика
  • обрезанная бутылка
  • бечевка
  • фломастеры
  • ножницы

Вырезаем из бумажной салфетки полоску. Наносим по ее ширине разноцветными фломастерами точки в один ряд. На бечевке также наносим несколько отметок фломастерами разных цветов, но не в ряд, а вдоль и на равном расстоянии друг от друга. Для опыта лучше брать прозрачные стаканы, в прозрачной посуде ребенку интересней будет наблюдать за происходящим. Наливаем в стаканы воду. В первый стакан опускаем полоску из бумажной салфетки так, чтобы она немного касалась поверхности воды. Во второй стакан помещаем бечевку таким же образом, как и салфетку. При этом обрезанная бутылка поможет вам закрепить верхний конец бечевки. Всё. Наблюдаем с ребенком, как вода сама поднимается вверх.

Вода - уникальное вещество. При всей распространенности и простоте своего состава ее физические и химические свойства зачастую являются исключениями. Так, например, при 4 о С плотность воды максимальна, а при переходе в твердое состояние (лед) она уменьшается! Никакое другое вещество себя так не ведет.

Что же касается данного опыта, на первый взгляд, все очевидно и просто. Вода смачивает бумагу и бечевку, и материалы намокают. А вот объяснить почему так происходит, затруднительно.

Для начала разберемся в самом термине «смачивание». Оно представляет собой явление взаимодействия жидкости с поверхностью твердого тела. Вариантов развития событий, как всегда, два:

  • притяжение между молекулами жидкости сильнее, чем их притяжение к молекулам твердого тела. Жидкость стремится сократить контакт с поверхностью и, в результате, собирается в капли.
  • притяжение между молекулами жидкости слабее, чем их притяжение к молекулам твердого тела. Жидкость стремится увеличить площадь соприкосновения и, в результате, прижимается к поверхности тела, растекаясь по ней.

Тут, очевидно, второй вариант. Растекание происходит до тех пор, пока жидкость не покроет всю поверхность, или пока слой жидкости не станет мономолекулярным.

Но как вода преодолевает силы гравитации?

Собственно, так же, как и в растениях. Вода поднимается вверх по капиллярным сосудам растения и доставляет ее от корней к листьям и плодам.

Происходит это за счет разницы давлений и сил поверхностного натяжения воды. Поверхность воды, попадающей в узкий капилляр, принимает вогнутую форму (мениск). При таком положении давление жидкости под этим мениском становится меньше атмосферного, и вода стремится вверх. И чем тоньше капилляр, тем выше поднимается вода, стремясь уравновесить отрицательное давление. Если жидкость не смачивает поверхность, то мениск будет выпуклый, и она не станет подниматься вверх по капилляру.

Салфетка имеет пористую структуру и состоит преимущественно из целлюлозы, которая, в свою очередь, имеет волокнистое строение. Таким образом, воде не составляет труда найти себе пути-капилляры для движения вверх.

В бечевке процессы протекают аналогичным образом, с той лишь разницей, что в ней не нарушаются механические свойства, так как состоит она из цельных нитей.

В условиях невесомости вода принимает форму шара.

Можно ли бегать по поверхности воды?

Можно. Чтобы в этом убедиться, посмотрите летом на поверхность любого пруда или озера. По воде не только ходит, но и бегает немало живого и быстрого народца. Если учесть, что площадь опоры лапок у этих насекомых очень мала, то нетрудно понять, что, несмотря на их небольшой вес, поверхность воды выдерживает, не прорываясь, значительное давление.

Может ли вода течь вверх?

Да, может. Это происходит всегда и повсеместно. Сама поднимается вода вверх в почве, смачивая всю толщу земли от уровня грунтовых вод. Сама подни­мается вода вверх по капиллярным сосудам дерева и по­могает растению доставлять растворенные питательные вещества на большую высоту - от глубоко скрытых в земле корней к листьям и плодам. Сама движется вода вверх в порах промокательной бумаги, когда вам приходится высушивать кляксу, или в ткани поло­тенца, когда вытираете лицо. В очень тонких трубоч­ках - в капиллярах - вода может подняться на высоту до нескольких метров.

Чем это объясняется?

Еще одной замечательной особенностью воды - ее исключительно большим поверхностным натяжением.

Поверхностное натяжение воды столь велико? что по ней спокойно могут гулять, как посуху, довольно крупные водя­ные насекомые, вроде этих.

Молекулы воды на ее поверхности испытывают действие сил межмолекулярного притяжения только с одной стороны, а у воды это взаимодействие аномаль­но велико. Поэтому каждая молекула на ее поверхности втягивается внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости. У воды она особенно велика: ее поверхностное натяжение состав­ляет 72 дин/см.

Эта сила и придает мыльному пузырю, падающей капле и любому количеству жидкости в условиях неве­сомости форму шара. Она поддерживает бегающих по поверхности пруда жуков, лапки которых водой не смачиваются. Она поднимает воду в почве, стенки тонких пор и отверстий в ней, наоборот, хорошо сма­чиваются водой. Вряд ли вообще было бы возможно земледелие, если бы вода не обладала бы этой исклю­чительной особенностью.

Все ли свойства воды понятны ученым?

Конечно, нет! Вода - загадочное вещество. До сих пор ученые не могут еще понять и объяснить очень многие ее свойства. Непонятно, например, почему вода не только изменяет некоторые свойства при воздей­ствии на нее магнитного поля, но и надолго сохраняет эти изменения. В такой воде иначе идут реакции осаж­дения. Многие соли из обычной воды выпадают при ее испарении в форме плотного осадка, образуя накипь (посмотрите в чайник). «Намагниченная» вода накипи не образует. Почему это так - никто не знает. Но то, что явление это еще не понято и пока не объяснено, ни­сколько не мешает инженерам с успехом применять его в технике для борьбы с накипью в котлах тепловых электростанций.

Недавно было обнаружено новое загадочное явле­ние. Оказалось, что вода на Земле изменяет свою при­роду в зависимости от того, что происходит на Солнце и в космосе. Было замечено, что космические причины влияют на характер протекания в воде некоторых хи­мических процессов, например на скорость появления осадков. Почему - неизвестно.

Многие наблюдения и факты говорят о том, что талая вода обладает особыми свойствами - она более благоприятна для развития живых организмов. Поче­му - тоже неизвестно.

Можно не сомневаться, что все подобные загадки будут успешно разрешены наукой. Будет открыто еще немало новых, более удивительных загадочных свойств воды - самого необыкновенного вещества в мире.

Все ли свойства воды уже перечислены в этой статье?

Нет, к сожалению, далеко не все. Не хватило места даже для наиболее интересных. Но тот, кто захочет подробно познакомиться со всеми свойствами воды, которые уже изучены, сможет это сделать самостоятельно.

Для этого ему нужно будет прочесть во всех научных библиотеках мира все уже вышедшие жур­налы и книги, где напечатаны научные работы по химии, физике, биологии, физиологии, биохимии, биофизике, геологии, геохимии. Придется изучить и многие работы по астрономии и астрофизике (инте­ресно, есть ли вода на планетах, в межзвездном про-

Этот вопрос совсем не так неразумен, как это может показаться. В самом деле, разве вода - это только та бесцветная жидкость, что налита в стакан? Океан, покрывающий почти всю нашу планету, всю нашу чудесную Землю, в котором миллионы лет назад зародилась жизнь, - это вода. Тучи, облака, туманы, несущие влагу всему живому на земной поверхности, - это ведь тоже вода. Бескрайние ледяные пустыни полярных областей, снеговые покровы, застилающие почти половину планеты, - и это вода. Прекрасно, невоспроизводимо бесконечное многообразие красок солнечного заката, его золотых и багряных переливов; торжественны и нежны краски небосвода при восходе солнца. Этот великий художник природы - вода. Кроме того, разве все секреты воды открыты учеными? На этот вопрос сможет ответить только время. Почему нас заинтересовала вода?

Мы хотим узнать, может ли вода течь вверх?

Гипотеза: вода может течь вверх.

Цель исследования: исследовать, может ли вода течь вверх.

Задачи:

1. Изучить информацию о свойствах воды, используя научно–популярную литературу;
2. Провести физические опыты по исследованию свойств воды;
3. Выяснить, когда и при каких условиях вода поднимается вверх;
4. Сформулировать выводы.

При подготовке работы была изучена различная литература, изучены материалы Интернет–сайтов, применены знания, полученные на уроках окружающего мира и на кружке “Калейдоскоп наук”, проведен ряд опытов.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Действие силы тяжести

Если вы выпустите книгу из рук, она неизбежно упадет на пол. “Виновата” в этом сила тяжести, которая притягивает все без исключения объекты к центру Земли. А подняв упавшую книгу, вы заметите, что ее внешний вид нисколько не изменился. Она – твердая, а твердые предметы сохраняют свою первоначальную форму. Если, конечно, не прикладывать к ним какую – либо специальную силу.

Теперь представьте себе, что упала не книга, а стакан с водой. Вода выплеснется и в беспорядке растечется. В самом деле, жидкость собственной формы не имеет. Она лишь занимает тот объем, ту форму, в которую налита. Все та же сила тяжести заставляет ее стремиться к самой низкой точке. Одним словом, где вода - там самое низкое место. Почему реки впадают в море? Просто уровень воды в морях ниже. Любая река как бы наклонена к тому морю, в которое она впадает. Ярким доказательством тому, что вода притягивается к Земле и стремится занять самый низкий уровень, являются водопады.

Сообщающиеся сосуды

Конечно, в обычном состоянии вода не сможет подниматься по склону, тем не менее, инженерам удалось заставить ее пересекать горные перевалы. Для этого оказалось достаточным... поместить воду в трубы. Именно так! Вода, бегущая в трубе со склона, давит на массы воды в трубе, поднимающейся в гору. И они, эти тысячи тонн воды, текут вверх! Правда, выше головы не прыгнешь: вода не поднимется выше своего первоначального уровня – высоты первой горы, с которой стекает. Но человек всегда найдет возможность сделать ту точку, из которой вытекает вода, самой высокой, и тогда никакие перевалы ему не страшны!

ЧЕГО НЕ ЗНАЛИ ДРЕВНИЕ?

Жители современного Рима до сих пор пользуются остатками водопровода, построенного еще древними: солидно возводили римские рабы водопроводные сооружения.

Не то приходится сказать о познаниях римских инженеров, руководивших этими работами; они явно недостаточно были знакомы с основами физики. Взгляните на прилагаемый рисунок, воспроизведенный с картины Германского музея в Мюнхене. Вы видите, что римский водопровод прокладывался не в земле, а над ней, на высоких каменных столбах. Для чего это делалось? Разве не проще было прокладывать в земле трубы, как делается теперь? Конечно, проще, но римские инженеры того времени имели весьма смутное представление о законах сообщающихся сосудов. Они опасались, что в водоемах, соединенных очень длинной трубой, вода не установится на одинаковом уровне. Если трубы проложены в земле, следуя уклонам почвы, то в некоторых участках вода должна течь вверх, - и вот римляне боялись, что вода вверх не потечет. Поэтому они обычно придавали водопроводным трубам равномерный уклон вниз на всем их пути (а для этого требовалось нередко либо вести воду в обход, либо возводить высокие арочные подпоры). Одна из римских труб, Аква Марциа, имеет в длину 100 км, между тем как прямое расстояние между ее концами вдвое меньше. Полсотни километров каменной кладки пришлось проложить из–за незнания элементарного закона физики!

ЧЕГО НЕ ЗНАЛИ МЫ?

Исследуя проблему воды, мы столкнулись с задачей. Перед нами было два кофейника одинаковой ширины: один высокий, другой - низкий. Какой из них вместительнее? В какой из этих кофейников можно налить больше жидкости?

Мы, не подумав, решили, что высокий кофейник вместительнее низкого. Однако когда стал лить жидкость в высокий кофейник, то налили его только до уровня отверстия его носика - дальше вода начала выливаться. А так как отверстия носика у обоих кофейников на одной высоте, то низкий кофейник оказался столь же вместительным, как и высокий с коротким носиком.

Это и понятно: в кофейнике и в трубке носика, как во всяких сообщающихся сосудах, жидкость должна стоять на одинаковом уровне, несмотря на то, что жидкость в носике весит гораздо меньше, чем в остальной части кофейника. Если же носик недостаточно высок, вы никак не нальете кофейник доверху: вода будет выливаться. Обычно носик устраивается даже выше краев кофейника, чтобы сосуд можно было немного наклонять, не выливая содержимого.

Капиллярные явления

При определенных обстоятельствах вода способна самопроизвольно подниматься вверх. Если поместить достаточно тонкую трубку (например, соломинку) в сосуд с водой, уровень воды в трубке поднимается выше уровня воды в сосуде. Разница между уровнями воды в сосуде и в трубке будет тем больше, чем меньше внутренний диаметр трубки. Способность воды подниматься в трубке с достаточно узким каналом – один из примеров, так называемых капиллярных явлений, благодаря которым растения способны доставлять воду из почвы к ветвям и листьям. Эти же явления помогают крови циркулировать в человеческом теле, особенно в капиллярах – мельчайших кровеносных и лимфатических сосудах. Кроме того, это происходит всегда и повсеместно. Сама поднимается вода вверх в почве, смачивая всю толщу земли от уровня грунтовых вод. Сама поднимается вода вверх по капиллярным сосудам дерева и помогает растению доставлять растворенные питательные вещества на большую высоту - от глубоко скрытых в земле корней к листьям и плодам. Сама движется вода вверх в порах промокательной бумаги, когда нам приходится высушивать кляксу, или в ткани полотенца, когда вытираем лицо.

Атмосферное давление

В старину – в 17–18 веках – вельможи забавлялись следующей поучительной игрушкой: изготовляли кувшин, в верхней части которой имелись крупные узорчатые вырезы. Такой кувшин, налитый вином, предлагали незнатному гостю, над которым можно было безнаказанно посмеяться. Как пить из нее? Наклонить нельзя: вино польется из множества отверстий, а до рта не достигнет ни капли. Случится, как в сказке:

Мед, пиво пил,
Да усы лишь обмочил.
–Как выпить содержимое?

Надо заткнуть отверстие В, взять в рот носик и втянуть в себя жидкость, не наклоняя сосуда. Вино поднимется через отверстие Е по каналу внутри ручки, далее по его продолжению С внутри верхнего края кувшина и достигнет носика.

ПРАКТИЧЕСКАЯ ЧАСТЬ

Для выяснения того, как вода может течь вверх, мы провели ряд опытов.

Свои наблюдения мы занесли в таблицу:

Опыт 1 – с фонтаном

Для наблюдения используется опытный макет фонтана (два сообщающихся сосуда, соединенных резиновой трубкой). В один из сосудов (резервуар) наливается вода. Другой сосуд имеет отверстие, из которого “бьет фонтан”. Резервуар с водой опускается вниз и поднимается вверх. Вода в сообщающихся сосудах устанавливается на одинаковом уровне. Если резервуар поднимать, то вода сама поднимается вверх (из фонтана).

Опыт 2 – с цветком

Для опыта отбираются несколько цветков на стебле. В воде растворяется марганцево–кислый калий. Вода подкрашивается для того, чтобы можно было наблюдать за поднятием жидкости по стеблю. В подкрашенную воду опускаются цветы. Через некоторое время становится заметно, что подкрашенная вода сама поднимается вверх по стеблю. Ей помогает в этом атмосферное давление. При этом наблюдаются капиллярные явления. Через продолжительное время подкрашенная вода проникает даже в цветы.

Опыт 3 – с пробиркой

Для опыта используется: пробирка химическая, сосуд с горячей водой, сосуд с холодной подкрашенной водой.

Пробирка опускается в горячую воду так, чтобы открытый конец был вверху. Воздух в пробирке некоторое время прогревается. Затем открытый конец пробирки закрывается пластилином или большим пальцем. Пробирка очень быстро переворачивается и опускается в сосуд с холодной водой. Холодная вода сама начинает подниматься вверх. В этом воде помогает атмосферное давление.

В горячей воде воздух в пробирке прогревается, расширяется, частично выходит из пробирки. В холодной воде воздух сжимается. Атмосферное давление подталкивает воду в пробирку.

Опыт 4 – со шприцем

Для опыта используется: шприц демонстрационный или медицинский и сосуд с подкрашенной водой.

Вначале опыта поршень шприца до упора продвигается к отверстию шприца. После этого отверстие шприца опускается в подкрашенную воду. Поршень подтягивается вверх. Вода сама начинает подниматься вверх за поршнем.

В этом воде помогает атмосферное давление, которое подталкивает воду в разреженное пространство.

Опыт 5 – с сообщающимися сосудами

Для проведения опыта используются: электрическая плитка, теплоприемник, манометр, резиновая трубка, подкрашенная жидкость.

В сообщающиеся сосуды манометра наливается подкрашенная вода. Вода устанавливается на одинаковом уровне в обоих сосудах. Один из сообщающихся сосудов соединяется с теплоприемником резиновой трубкой. Разогретая электрическая плитка располагается напротив теплоприемника. Вода в одной из трубок сама начинает подниматься.

От разогретой плитки к теплоприемнику доходят тепловые лучи. Воздух в теплоприемнике нагревается, расширяется, давит на воздух над жидкостью в том сосуде, который соединен резиновой трубкой с теплоприемником. В этой трубочке вода начинает опускаться, а в другой трубке вода начинает подниматься.

Ничем не примечательна внешне водонапорная башня одного из колхозов Спасского района Горьковской области. Не один год снабжает она сельчан родниковой водой. Однако, подойдя ближе, вы не услышите привычного шума работы водяного насоса - его здесь нет! И хотя источник расположен значительно ниже уровня верхней емкости, вода постоянно, лишь с короткими передышками, поднимается вверх! Уж не чудо ли? Нет, просто горьковскому умельцу, слесарю-сборщику Л. Черепкову удалось изобрести и проверить на деле оригинальную гидравлическую установку, в которой для подъема воды используется… энергия самого источника. Предлагаем нашим читателям познакомиться с принципами ее работы и устройством.

Нехитро устройство водопровода в сельской местности: электронасос подает воду в напорный бак, откуда она поступает к потребителям. Но электроэнергию для подъема воды нередко вырабатывают местные гидроэлектростанции за счет преобразования напора движущегося потока. Так не обойтись ли в этом случае вовсе без помощи электричества, заставив работать только сам источник воды - ручей, родник? Это можно осуществить с помощью несложной гидравлической установки, действующей по принципу своеобразных «качелей»: слив определенного количества воды обеспечивает подъем части ее на некоторую высоту над источником.

Устройство безмоторного автоматического водоподъемника изображено на рисунке 1. Его основные части: водонапорный бак, колодец источника, напорный и воздушный герметичные баки с клапанными механизмами и соединительные трубы.

Вода от родника заполняет колодец. Как только ее уровень достигнет входного отверстия соединительной трубы 9, она начинает поступать в напорный бак. Когда тот заполнится, уровень в колодце поднимется до обреза трубы 8 и вода станет поступать в воздушный бак. Давление сжимаемого там воздуха по трубе 2 передается в напорный бак, и так как высота H1 больше Н2 на величину потери напора от сопротивления в трубах, вода оттуда будет подниматься в водонапорный бак. Обратному перетеканию воды из напорного бака в колодец будет препятствовать закрывшийся обратный клапан А.

Рис. 1. Схема водоподъемника:

1 - воздушный бак, 2 - воздушная труба, 3 - напорный бак, 4 - колодец, 5 - родник, 6 - водонапорный бак, 7 - нагнетательная труба, 8 - напорная труба, 9 - соединительная труба; А, Б - клапаны напорного бака.

Подача воды в водонапорный бак будет продолжаться до тех пор, пока воздушный не заполнится водой. При этом сработает его клапанный механизм и вода уйдет в сливное отверстие. Затем рабочий цикл повторяется.

Клапанный механизм воздушного бака (рис. 2) работает следующим образом. Поступающая по трубе 3 вода, вытесняя воздух в напорный бак, заполняет воздушный бак. Поднявшись в нем до верхнего уровня цилиндра, вода поднимет поплавок 10, который закроет клапан 13, преграждая доступ в стакан поплавка 2. Попасть в него она сможет лишь через верхний срез стакана - когда весь воздух будет вытеснен в напорный бак. При заполнении стакана

поплавок своими рычагами откроет воздушный и сливной клепаны, сообщая напорный бак с атмосферой, а воздушный - со сливным патрубком 14. Клапаны останутся открытыми до тех пор, пока бак не опорожнится. И только когда вода через небольшое отверстие 12 вытечет из цилиндра 11, поплавок 10 откроет своим рычагом сливной клапан 13 стакана. Поплавок 2 опустится, закроет клапаны 8 и 15 - бак снова готов к работе.

Производительность такого водоподъемника зависит от дебита источника, высоты подъема воды, диаметра труб. Действующая установка при перепаде воды H1 = 8,2 м и напоре Н2 = 7 м имеет производительность 21 312 л воды в сутки. Один цикл зарядки баков занимает 15 минут и подает в водонапорную башню 222 л, сливая из воздушного 507 л.

Рис. 2. Клапанный механизм воздушного бака:

1 - стакан, 2 - поплавок, 3 - напорная труба, 4 - воздушная труба, 5, 6, 7 - рычаги поплавка, 8 - воздушный клапан, 9 - рычаг, 10 - поплавок, 11 - цилиндр, 12 - перепускное отверстие, 13 - клапан, 14 - сливной патрубок, 15 - сливной клапан.

Установка проста по конструкции и может быть изготовлена из доступных материалов в небольших механических мастерских. Надежность, безотказность в работе и автономность позволяют эксплуатировать такой водоподъемник вдали от линий электропередачи, использовать для создания искусственных водоемов, систем орошения, других хозяйственных нужд. Благодаря автоматическому режиму система может длительное время работать без присмотра человека.

На схеме изображен лишь один вариант такой установки, действующей по принципу гидрокомпрессора. Для получения большего напора систему можно сделать двухступенчатой: с последовательным подъемом воды в двух напорных баках. Отсутствие гидравлической связи между воздушным и напорным баком позволяет установке работать на двух источниках воды, когда, например, чистый родник имеет небольшую производительность, а протекающий рядом стремительный горный ручей непригоден для питья. Тогда ключевая вода может поступать только в напорный бак, а из ручья - в воздушный, создавая необходимый напор в системе.

Если читателей журнала заинтересовало мое сообщение, с удовольствием поделюсь с ними своим опытом и новыми идеями.

Л. Черепнов, г. Горький.

В Синьцзян-Уйгурском автономном районе на северо-западе Китая существует аномальный холм, по склону которого вода течет не вниз, а вверх.

Странный холм был обнаружен в 2003 году двумя туристами в районе горной гряды, расположенной в 10 км от поселка Баньцзегоу уезда Цзитай. События, произошедшие с ними дальше, не поддаются объяснениям. Так, остановив автомобиль, на котором они путешествовали, на дне расположенной на вершине холма V-образной впадины и сняв его с тормозов, туристы с удивлением обнаружили, что автомобиль стал сам двигаться вверх по западному склону с нарастающей скоростью, которая к моменту достижения вершины склона достигла 30 км\ч.

Еще большее изумление туристов вызвал тот факт, что вода, разлитая на западном склоне, потекла не вниз, а вверх, в сторону вершины.

Некоторые эксперты пытаются объяснить эти аномальные явления геологическими особенностями местности. Однако эти факты подтверждены проверкой, выполненной профессором Ланьчжоуского университета Фан Сяомином еще в конце прошлого века. Так, на локальной площадке длиной 60 м все круглые предметы, машины с выключенными двигателями самопроизвольно движутся вверх, кроме того - и вода течет вверх по склону с наклоном в 15 градусов.

Чтобы проехать на этом участке на автомобиле, велосипеде или даже на роликовых коньках, нужно забыть о всякой логике. Водителю при подъеме приходится жать на тормоз, а не на газ, поскольку автомобиль начинает набирать скорость.

Профессор Фан Сяомин считает причиной столь аномального явления геомагнетизм или изменения атмосферного давления. На всякий случай всех желающих посмотреть на то, как вода течет по склону не вниз, а вверх, предупреждают: часто у людей, побывавших в таких "загадочных" местах, в дальнейшем наблюдаются психические отклонения, они начинают часто болеть, зафиксировано несколько летальных исходов.

В мире есть еще несколько подобных мест

Ранее неоднократно упоминалось о странных явлениях, происходящих близ холма Мегурэ (по-румынски - "курган") в местечке Бакэу в Румынии. Там в начале 90-х был обнаружен большой клад - 2000 серебряных монет эпохи римского императора Траяна. После этой находки некая неведомая сила стала выталкивать все посторонние предметы - даже автомобили - с подножья холма. Местные корреспонденты, отправленные на расследование, рассказали о своем опыте: "Капот машины приподнялся, будто от действия могучей подземной пружины, и автомобиль поехал назад к вершине холма!".

Кроме того, фактическое повторение аномальных явлений в Китае наблюдается в Израиле.Очевидец утверждает , что недалеко от Бейт-Шемеша вода также поднимается по склону вверх. Турист, наслушавшись рассказов о подобном явлении, решил провести эксперимент - он останавливал на этой горе машину, ставил ее на "нейтралку" и отпускал тормоз. Вопреки ожиданиям, машина катилась вверх.

Однако, по мнению туриста, это не связано с магнитными свойствами, так как пластиковые мячи замечательно катились под гору. На снимке хорошо видно, как вылитая вода течет не вниз, а вверх - к кромке перевала, которая довольно отчетливо видна. Данная аномалия наблюдается на всем протяжении шоссе, примерно 600 метров, вплоть до пересечения этой дороги с главной магистралью.

Как-то объяснить такие явления очевидец не смог, но сообщил, что это место эзотерически необычно - оно связано с потерей ковчега Завета. Именно в этих местах евреи потеряли довольно большой сундук с каменными скрижалями, где были начертаны 10 заповедей.

http://www.newsru.com


Top