Квадратный трёхчлен и его корни. Квадратный трехчлен и его корни

Изучение многих физических и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые ВУЗы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса алгебры рассматривается только на немногочисленных факультативных или предметных курсах.
На мой взгляд, функционально-графический метод является удобным и быстрым способом решения уравнений с параметром.
Как известно, в отношении уравнений с параметрами встречаются две постановки задачи.

  1. Решить уравнение (для каждого значения параметра найти все решения уравнения).
  2. Найти все значения параметра, при каждом из которых решения уравнения удовлетворяют заданным условиям.

В данной работе рассматривается и исследуется задача второго типа применительно к корням квадратного трехчлена, нахождение которых сводится к решению квадратного уравнения.
Автор надеется, что данная работа поможет учителям при разработке уроков и при подготовке учащихся к ЕГЭ.

1. Что такое параметр

Выражение вида 2 + bх + c в школьном курсе алгебры называют квадратным трехчленом относительно х, где a, b, c – заданные действительные числа, причем, a =/= 0. Значения переменной х, при которых выражение обращается в нуль, называют корнями квадратного трехчлена. Для нахождения корней квадратного трехчлена, необходимо решить квадратное уравнение 2 + bх + c = 0.
Вспомним из школьного курса алгебры основные уравнения aх + b = 0;
aх2 + bх + c = 0. При поиске их корней, значения переменных a, b, c, входящих в уравнение считаются фиксированными и заданными. Сами переменные называют параметром. Поскольку, в школьных учебниках нет определения параметра, я предлагаю взять за основу следующий его простейший вариант.

Определение. Параметром называется независимая переменная, значение которой в задаче считается заданным фиксированным или произвольным действительным числом, или числом, принадлежащим заранее оговоренному множеству.

2. Основные типы и методы решения задач с параметрами

Среди задач с параметрами можно выделить следующие основные типы задач.

  1. Уравнения, которые необходимо решить либо для любого значения параметра (параметров), либо для значений параметра, принадлежащих заранее оговоренному множеству. Например. Решить уравнения: aх = 1, (a – 2)х = a 2 4.
  2. Уравнения, для которых требуется определить количество решений в зависимости от значения параметра (параметров). Например. При каких значениях параметра a уравнение 4х 2 4 aх + 1 = 0 имеет единственный корень?
  3. Уравнения, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например, найти значения параметра, при которых корни уравнения (a – 2)х 2 2aх + a + 3 = 0 положительные.
Основные способы решения задач с параметром: аналитический и графический.

Аналитический – это способ так называемого прямого решения, повторяющего стандартные процедуры нахождения ответа в задачах без параметра. Рассмотрим пример такой задачи.

Задача № 1

При каких значениях параметра а уравнение х 2 2aх + a 2 – 1 = 0 имеет два различных корня, принадлежащих промежутку (1; 5)?

Решение

х 2 2aх + a 2 1 = 0.
По условию задачи уравнение должно иметь два различных корня, а это возможно лишь при условии: Д > 0.
Имеем: Д = 4a 2 – 2(а 2 – 1) = 4. Как видим дискриминант не зависит от а, следовательно, уравнение имеет два различных корня при любых значениях параметра а. Найдем корни уравнения: х 1 = а + 1, х 2 = а – 1
Корни уравнения должны принадлежать промежутку (1; 5), т.е.
Итак, при 2 < а < 4 данное уравнение имеет два различных корня, принадлежащих промежутку (1; 5)

Ответ: 2 < а < 4.
Такой подход к решению задач рассматриваемого типа возможен и рационален в тех случаях, когда дискриминант квадратного уравнения «хороший», т.е. является точным квадратом какого либо числа или выражения или корни уравнения можно найти по теореме обратной т.Виета. Тогда, и корни не представляют собой иррациональных выражений. В противном случае решения задач такого типа сопряжено с достаточно сложными процедурами с технической точки зрения. Да и решение иррациональных неравенств требует от ученика новых знаний.

Графический – это способ, при котором используют графики в координатной плоскости (х;у) или (х;а). Наглядность и красота такого способа решения помогает найти быстрый путь решения задачи. Решим задачу № 1 графическим способом.
Как известно из курса алгебры корни квадратного уравнения (квадратного трехчлена) являются нулями соответствующей квадратичной функции: У = х 2 – 2ах + а 2 – 1. Графиком функции является парабола, ветви направлены вверх (первый коэффициент равен 1). Геометрическая модель, отвечающая всем требованиям задачи, выглядит так.

Теперь осталось «зафиксировать» параболу в нужном положении необходимыми условиями.

    1. Так как парабола имеет две точки пересечения с осью х , то Д > 0.
    2. Вершина параболы находится между вертикальными прямыми х = 1 и х = 5, следовательно абсцисса вершины параболы х о принадлежит промежутку (1; 5), т.е.
      1 <х о < 5.
    3. Замечаем, что у (1) > 0, у (5) > 0.

Итак, переходя от геометрической модели задачи к аналитической, получаем систему неравенств.

Ответ: 2 < а < 4.

Как видно из примера, графический способ решения задач рассматриваемого типа возможен в случае, когда корни «нехорошие», т.е. содержат параметр под знаком радикала (в этом случае дискриминант уравнения не является полным квадратом).
Во втором способе решения мы работали с коэффициентами уравнения и областью значения функции у = х 2 – 2ах + а 2 – 1.
Такой способ решения нельзя назвать только графическим, т.к. здесь приходится решать систему неравенств. Скорее этот способ комбинированный: функционально-графический. Из этих двух способов последний является не только изящным, но и наиболее важным, так как в нем просматриваются взаимосвязь между всеми типами математической модели: словесное описание задачи, геометрическая модель – график квадратного трехчлена, аналитическая модель – описание геометрической модели системой неравенств.
Итак, мы рассмотрели задачу, в которой корни квадратного трехчлена удовлетворяют заданным условиям в области определения при искомых значениях параметра.

А каким еще возможным условиям могут удовлетворять корни квадратного трехчлена при искомых значениях параметра?

Описание видеоурока

Каждое из выражений три икс пятой степени минус икс четвертой степени плюс три икс куб минус шесть икс плюс два; пять игрек четвертой степени минус игрек куб плюс пять игрек квадрат минус три игрек плюс восемнадцать; три зет шестой степени минус зет четвертой степени плюс зет квадрат минус зет плюс два является многочленом с одной переменной.

Значение переменной, при котором многочлен обращается в нуль, называют корнем многочлена.

Найдем, например, корни многочлена икс куб минус четыре икс. Для этого решим уравнение икс куб минус четыре икс равно нулю. Разложив левую часть уравнения на множители, получим произведение из трех множителей: икс, икс минус два и икс плюс два, равное нулю. Отсюда икс первое равно нулю, икс второе равно два, икс третье равно минус два.

Таким образом, числа нуль, два и минус два - являются корнями многочлена икс куб минус четыре икс…

Многочлен второй степени с одной переменной называют квадратным трехчленом.

Квадратным трехчленом называется многочлен вида а икс квадрат плюс бэ икс плюс цэ, где икс -переменная, ..а, бэ и цэ -некоторые числа, причем а не равно нулю.

Коэффициент а называют старшим коэффициентом, цэ - свободным членом квадратного трехчлена.

Примерами квадратных трехчленов являются многочлены два икс квадрат минус икс минус пять; икс квадрат плюс семь икс минус восемь. В первом из них а равно два, бэ равно минус один, цэ равно минус пять, во втором а равно один, бэ равно семь, цэ равно минус восемь. К квадратным трехчленам относятся также и такие многочлены второй степени, у которых один из коэффициентов бэ либо цэ или даже оба равны нулю. Так, многочлен пять икс квадрат минус два икс считают квадратным трехчленом. Коэффициент а равен пяти, бэ равно минус двум, цэ равно нулю.

Для того чтобы найти корни квадратного трехчлена а икс квадрат плюс бэ икс плюс цэ, нужно решить квадратное уравнение а икс квадрат плюс бэ икс плюс цэ равно нулю.

Пример первый. Найдем корни квадратного трехчлена икс квадрат минус три икс минус четыре.

Для этого приравняем данное выражение к нулю и решим полученное квадратное уравнение. Дискриминант в нем равен двадцати пяти, первый корень равен четырем, второй корень равен минус одному.

Таким образом, квадратный трехчлен икс квадрат минус три икс минус четыре имеет два корня: четыре и минус один.

Так как квадратный трехчлен а икс квадрат плюс бэ икс плюс цэ имеет те же корни, что и уравнение а икс квадрат плюс бэ икс плюс цэ равно нулю, то он может, как и квадратное уравнение иметь два корня, один корень или не иметь корней вообще. Это зависит от значения дискриминанта квадратного уравнения, который также называют дискриминантом квадратного трехчлена.. Если дискриминант больше нуля, то квадратный трехчлен имеет два корня; если дискриминант равен нулю, то квадратный трехчлен имеет один корень; если дискриминант меньше нуля, то квадратный трехчлен не имеет корней.

При решении задач иногда бывает удобно представить квадратный трехчлен а икс квадрат плюс бэ икс плюс цэ в виде суммы а умноженного на квадрат разности а и эм…и числа эн, где эм и эн - некоторые числа. Такое преобразование называется выделением квадрата двучлена из квадратного трехчлена. Покажем на примере, как выполняется такое преобразование.

Второй пример. Выделить из трехчлена два икс квадрат минус четыре икс плюс шесть… квадрат двучлена.

Вынесем за скобки множитель два,.. затем преобразуем выражение в скобках, для чего прибавим и отнимем единицу… В итоге получим сумму удвоенного квадрата разности чисел икс и один… И числа четыре.

Таким образом, два икс квадрат минус четыре икс плюс шесть равно сумме удвоенного квадрата разности чисел икс и один.. И числа четыре…

Рассмотрим задачу, при решении которой используется выделение квадрата двучлена из квадратного трехчлена.

Задача. Докажем, что из всех прямоугольников с периметром 20 см наибольшую площадь имеет квадрат.

Пусть одна сторона прямоугольника равна икс сантиметров. Тогда длина второй будет десять минус икс сантиметров, а площадь прямоугольника равна произведению этих сторон.

Раскрыв скобки в выражении икс умноженное на разность десять и икс, получим десять икс минус икс квадрат. Выражение минус икс квадрат плюс десять икс представляет собой квадратный трехчлен, в котором коэффициент А равен минус один, бэ равно десяти, цэ равно нулю. Выделим квадрат двучлена и получим выражение минус квадрат разности икс и пять.. плюс двадцать пять.

Так как выражение минус квадрат разности икс и пять при любом икс не равном пяти отрицательно, то и всё выражение минус квадрат разности икс и пять… плюс двадцать пять принимает наибольшее значение при икс равном пяти.

Значит, площадь будет наибольшей, когда одна из сторон прямоугольника равна 5 см. В этом случае другая сторона также равна 5 см. Это означает, что данный прямоугольник является квадратом.

Квадратным трехчленом называют трехчлен вида a*x 2 +b*x+c, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не должно равняться нулю.

Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Корнем квадратного трехчлена a*x 2 +b*x+c называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 +b*x+c обращается в нуль.

Для того, чтобы найти корни квадратного трехчлена необходимо решить квадратное уравнение вида a*x 2 +b*x+c=0.

Как найти корни квадратного трехчлена

Для решения можно использовать один из известных способов.

  • 1 способ.

Нахождение корней квадратного трехчлена по формуле.

1. Найти значение дискриминанта по формуле D =b 2 -4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

Если D > 0, то квадратный трехчлен имеет два корня.

x = -b±√D / 2*a

Если D < 0, то квадратный трехчлен имеет один корень.

Если дискриминант отрицателен, то квадратный трехчлен не имеет корней.

  • 2 способ.

Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.

Найдем корни квадратного трехчлена x 2 +2*x-3. Для этого решим следующее квадратное уравнение: x 2 +2*x-3=0;

Преобразуем это уравнение:

В левой части уравнения стоит многочлен x 2 +2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:

(x 2 +2*x+1) -1=3

То, что в скобках можно представить в виде квадрата двучлена

Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.

В первом случае получаем ответ х=1, а во втором, х=-3.

Ответ: х=1, х=-3.

В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.

Презентация к уроку математики в 9 классе по теме "Квадратный трехчлен и его корни" с содержанием заданий углубленного уровня изучения предмета. Презентация расчитана на продолжительное использование в течение всего урока. Задания разного рода по содержанию.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Пункт плана Пункт плана Пункт плана Пункт плана Пункт плана Актуализация знаний Изучение темы урока Энциклопедическая справка Динамическая минутка Домашнее задание Квадратный трехчлен и его корни подготовила учитель математики: 1КК Радченко Наталья Федоровна

Актуализация знаний Изучение темы урока Энциклопедическая справка Динамическая минута Домашнее задание Актуализация знаний ◊ 1 Повторение материала о функциях; ◊ 2 Теоретические основы решения квадратного уравнения; ◊ 3 Теорема Виета; ◊ 4 Итог.

Актуализация знаний Повторение материала: среди данных функций укажите линейные убывающие функции: y= x²+12 y= -x-24 y= 9x+8 h= 23-23x h= 1/x² g= (x+16)² g= -3

Актуализация знаний Чем определяется наличие и количество корней квадратного уравнения? Как вычислить дискриминант квадратного уравнения D = 2. Назовите формулы корней квадратного уравнения D>0 , то х 1,2 = D = 0 , то х =

Актуализация знаний t² - 2t – 3 = 0 3. Вычислите дискриминант и ответьте на вопрос «Сколько корней имеет квадратное уравнение»? D= 16 >0 , два корня Чему равно произведение корней? Х 1  х 2 = - 3 5. Чему равна сумма корней уравнения? Х 1 + х 2 = 2 6. Что можно сказать о знаках корней? Корни разных знаков 7. Найдите корни подбором. Х 1 = 3, х 2 = -1

Изучение темы урока ◊ 1 Сообщение темы урока; ◊ 2 Теоретические основы понятия «Квадратный трехчлен и его корни»; ◊ 3 Высказывания великих мыслителей о математике; ◊ 4 Разбор примеров тематики; Изучение темы урока Энциклопедическая справка Динамическая минута Домашнее задание

Квадратный трехчлен и его корни Квадратным трехчленом называется многочлен вида ax² + bx + c , где x- переменная, a, b и c - некоторые числа, причем, a≠ 0 . Корнем квадратного трехчлена называется значение переменной, при котором значение этого трехчлена равно нулю Чтобы найти корни квадратного трехчлена ax² + bx + c , необходимо решить квадратное уравнение ax² + bx + c =0

Квадратный трехчлен и его корни Мало иметь хороший ум, главное – хорошо его применять. Р.Декарт Мыслить последовательно, судить доказательно, опровергать неправильные выводы должен уметь всякий: физик и поэт, тракторист и химик. Э. Кольман

Энциклопедическая справка ◊ 1 Понятие «параметр»; ◊ 2 Значение слова «параметр» словарях русского языка и словаре иностранных слов; ◊ 3 Обозначение и широта применения параметра; ◊ 4 Примеры с параметрами. Энциклопедическая справка Динамическая минута Домашнее задание

Энциклопедическая справка ПАРАМЕТР (от греч. παραμετρέω - меряю, c опоставляя). Величина, входящая в математическую формулу и сохраняющая постоянное значение в пределах одного явления или для данной частной задачи…, (мат.) Параметр – постоянная величина, выраженная буквой, сохраняющая свое постоянное значение лишь в условиях данной задачи… «Словарь иностранных слов». 3. При каком значении параметра m квадратный трехчлен 2х ² + 2тх – т – 0,5 имеет единственный корень? Найдите этот корень.

Динамическая пауза ◊ 1 Решение «проблемной задачи»; ◊ 2 Историческая справка: письмо из прошлого; Динамическая минутка Домашнее задание

Динамическая пауза При каком значении параметра т квадратный трехчлен 2х ² + 2тх – т – 0,5 = 0 и меет единственный корень? Найдите этот корень. Квадратное уравнение имеет один корень D=0 D= b² - 4ac; a=2, b=2m, c= - m – 0,5 D= (2m)² - 4  2  (- m – 0,5) = 4m² + 8m +4 D=0, 4m² + 8m +4 = 0 m² + 2m +1 = 0 (m + 1)² = 0 m= - 1 Подставим найденное значение m в исходное уравнение: 2х ² - 2х + 1 – 0,5 = 0 4х ² - 4х + 1 = 0 (2х – 1) ² =0 2х -1 =0 х = 0,5

Динамическая пауза В домашнем задании ученикам 8 класса было предложено найти корни квадратного трехчлена (х ² - 5х +7) ² - 2(х ² - 5х +7) - 3 Подумав, Витя рассудил так: сначала нужно раскрыть скобки, потом привести подобные слагаемые. Но Степа сказал, что есть более простой способ решения и раскрывать скобки вовсе необязательно. Помогите Вите найти рациональный путь решения

Динамическая пауза Задачи на нахождение корней квадратного трехчлена и составление квадратных уравнений встречаются уже в древнеегипетских математических папирусах. Общее правило нахождения корней и решения уравнений вида: ax ² + bx = c, где a > 0, b и c – любые, сформулировал Брахмагупта (VII в. н. э.). Брахмагупта еще не знал, что квадратное уравнение может иметь и отрицательный корень. Бхаскара Ачарья (XII в.) сформулировал, соотношения между коэффициентами уравнения. Составил много задач.

Обобщение, домашнее задание ◊ 1 Решение упражнений с параметром: различные типы заданий; ◊ 2 Итог по изучаемой теме; ◊ 3 Домашнее задание: по уровням. Домашнее задание

Обобщение, домашнее задание Найдите корни квадратного трехчлена (x-4)² +(4y-12)² . Найдите значения параметра a , при каждом из которых квадратный трехчлен x²+ 4 x + 2ax+8a+1 имеет одно решение. Задание на дом: п.3; 1 группа: №45 (в, г), №49(в, г); 2 группа: a) найдите значение параметра а, при котором квадратный трехчлен x²-6x+2ax+4a не имеет решения; b) найдите корни квадратного трехчлена (2x-6)²+(3y-12)²

источник шаблона Чернакова Наталия Владимировна Преподаватель химии и биологии ГОУ НПО Архангельской области «Профессиональное училище №31» «http://pedsovet.su/»


Тема «Квадратный трехчлен и его корни» изучается в курсе алгебры 9 класса. как и любой другой урок математики, урок по этой теме требует иособых средств и методов обучения. Необходима наглядность. К таковой можно отнести данный видеоурок, который разработан специально для того, чтобы облегчить труд учителя.

Данный урок длится 6:36 минут. За это время автор успевает раскрыть тему полностью. Учителю останется только подобрать задания по теме, чтобы закрепить материал.

Урок начинается с демонстрации примеров многочленов с одной переменной. Затем на экране появляется определение корня многочлена. Это определение подкрепляется примером, где необходимо найти корни многочлена. Решив уравнение, автор получает корни многочлена.

Далее следует замечание, что к квадратным трехчленам относятся и такие многочлены второй степени, у которых второй, третий или оба коэффициента, кроме старшего, равны нулю. Эта информация подкрепляется примером, где свободный коэффициент равен нулю.

Затем автор поясняет, как найти корни квадратного трехчлена. Для этого необходимо решить квадратное уравнение. И проверить это автор предлагает на примере, где дан квадратный трехчлен. Нужно найти его корни. Решение строится на основе решения квадратного уравнения, полученного из данного квадратного трехчлена. Решение расписано на экране подробно, четко и понятно. По ходу решения данного примера автор вспоминает, как решается квадратное уравнение, записывает формулы, и получает результат. На экране записывается ответ.

Нахождение корней квадратного трехчлена автор объяснил на основе примера. Когда обучающиеся поймут суть, то можно переходить к более общим моментам, что автор и делает. Поэтому он далее обобщает все вышесказанное. Общими словами на математическом языке автор записывает правило нахождения корней квадратного трехчлена.

Далее следует замечание, что в некоторых задачах удобнее квадратный трехчлен записывать немного иначе. На экране дается эта запись. То есть получается, что из квадратного трехчлена можно выделить квадрат двучлена. Такое преобразование предлагается рассмотреть на примере. Решение данного примера приводится на экране. Как и в прошлом примере, решение строится подробно со всеми необходимыми пояснениями. Затем автор рассматривает задачу, где используется только что выданная информация. Это геометрическая задача на доказательство. В решении присутствует иллюстрация в виде чертежа. Решение задачи расписано подробно и понятно.

На этом урок завершается. Но учитель может подобрать по способностям обучающихся задания, которые будут соответствовать данной теме.

Данный видеоурок можно использовать в качестве объяснения нового материала на уроках алгебры. Он отлично подойдет для самостоятельной подготовки обучающихся к уроку.


Top