Сообщение про ньютона по физике. Исаак Ньютон: краткая биография и его открытия

Великий английский физик, математик и астроном. Автор фундаментального труда «Математические начала натуральной философии» (лат. Philosophiae Naturalis Principia Mathematica), в котором он описал закон всемирного тяготения и так называемые Законы Ньютона, заложившие основы классической механики. Разработал дифференциальное и интегральное исчисление, теорию цветности и многие другие математические и физические теории.


Исаак Ньютон, сын мелкого, но зажиточного фермера, родился в деревне Вулсторп (графство Линкольншир), в год смерти Галилея и в канун гражданской войны. Отец Ньютона не дожил до рождения сына. Мальчик родился болезненным, до срока, но всё же выжил и прожил 84 года. Факт рождения под Рождество Ньютон считал особым знаком судьбы.

Покровителем мальчика стал его дядя по матери, Вильям Эйскоу. По окончании школы (1661) Ньютон поступает в Тринити-колледж (Колледж святой Троицы) Кембриджского университета. Уже тогда сложился его могучий характер - научная дотошность, стремление дойти до сути, нетерпимость к обману и угнетению, равнодушие к публичной славе. В детстве Ньютон, по отзывам современников, был замкнут и обособлен, любил читать и мастерить технические игрушки: часы, мельницу и т. п.

Судя по всему, научной опорой и вдохновителями творчества Ньютона в наибольшей степени были физики: Галилей, Декарт и Кеплер. Ньютон завершил их труды, объединив в универсальную систему мира. Меньшее, но существенное влияние оказали другие математики и физики: Евклид, Ферма, Гюйгенс, Меркатор, Валлис. Конечно, нельзя недооценивать и огромное влияние его непосредственного учителя Барроу.

Похоже на то, что значительную часть своих математических открытий Ньютон сделал ещё студентом, в «чумные годы» 1664-1666. В 23 года он уже свободно владел методами дифференциального и интегрального исчислений, включая разложение функций в ряды и то, что впоследствии было названо формулой Ньютона-Лейбница. Тогда же, по его утверждению, он открыл закон всемирного тяготения, точнее, убедился, что этот закон следует из третьего закона Кеплера. Кроме того, Ньютон в эти годы доказал, что белый цвет есть смесь цветов, вывел формулу «бинома Ньютона» для произвольного рационального показателя (включая отрицательные), и др.

1667: эпидемия чумы отступает, и Ньютон возвращается в Кембридж. Избран членом Тринити-колледжа, а в 1668 году становится магистром.

В 1669 году Ньютон избирается профессором математики, преемником Барроу. Барроу пересылает в Лондон сочинение Ньютона «Анализ с помощью уравнений с бесконечным числом членов», содержавшее сжатое изложение некоторых наиболее важных его открытий в анализе. Оно получило некоторую известность в Англии и за ее пределами. Ньютон готовит полный вариант этой работы, но найти издателя так и не удаётся. Он был опубликован лишь в 1711 году.

Продолжаются эксперименты по оптике и теории цвета. Ньютон исследует сферическую и хроматическую аберрации. Чтобы свести их к минимуму, он строит смешанный телескоп-рефлектор (линза и вогнутое сферическое зеркало, которое полирует сам). Всерьёз увлекается алхимией, проводит массу химических опытов.

1672: демонстрация рефлектора в Лондоне - всеобщие восторженные отзывы. Ньютон становится знаменит и избирается членом Королевского общества (британской Академии наук). Позже усовершенствованные рефлекторы такой конструкции стали основными инструментами астрономов, с их помощью были открыты иные галактики, красное смещение и др.

Разгорается полемика по поводу природы света с Гуком, Гюйгенсом и другими. Ньютон даёт зарок на будущее: не ввязываться в научные споры.

1680: Ньютон получает письмо Гука с формулировкой закона всемирного тяготения, послужившее, по признанию первого, поводом его работ по определению планетных движений (правда, потом отложенных на некоторое время), составивших предмет «Начал». Впоследствии Ньютон по каким-то причинам, быть может, подозревая Гука в незаконном заимствовании каких-то более ранних результатов самого Ньютона, не желает признавать здесь никаких заслуг Гука, но потом соглашается это сделать, хотя и довольно неохотно и не полностью.

1684-1686: работа над «Математическими началами натуральной философии» (весь трёхтомник издан в 1687 году). Приходит всемирная слава и ожесточённая критика картезианцев: закон всемирного тяготения вводит дальнодействие, несовместимое с принципами Декарта.

1696: Королевским указом Ньютон назначен смотрителем Монетного двора (с 1699 года - директор). Он энергично проводит денежную реформу, восстанавливая доверие к основательно запущенной его предшественниками монетной системе Великобритании.

1699: начало открытого приоритетного спора с Лейбницем, в который были вовлечены даже царствующие особы. Эта нелепая распря двух гениев дорого обошлась науке - английская математическая школа вскоре увяла на целый век, а европейская - проигнорировала многие выдающиеся идеи Ньютона, переоткрыв их много позднее. На континенте Ньютона обвиняли в краже результатов Гука, Лейбница и астронома Флемстида, а также в ереси. Конфликт не погасила даже смерть Лейбница (1716).

1703: Ньютон избран президентом Королевского общества, которым управлял двадцать лет.

1705: королева Анна возводит Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон . Впервые в английской истории звание рыцаря присвоено за научные заслуги.

Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, и подготовкой третьего издания «Начал».

В 1725 году здоровье Ньютона начало заметно ухудшаться (каменная болезнь), и он переселился в Кенсингтон неподалёку от Лондона, где и скончался ночью, во сне, 20 (31) марта 1727 года.

Надпись на его могиле гласит:

Здесь покоится сэр Исаак Ньютон , дворянин, который почти божественным разумом первый доказал с факелом математики движение планет, пути комет и приливы океанов.

Он исследовал различие световых лучей и появляющиеся при этом различные свойства цветов, чего ранее никто не подозревал. Прилежный, мудрый и верный истолкователь природы, древности и Св. писания, он утверждал своей философией величие Всемогущего Бога, а нравом выражал евангельскую простоту.

Пусть смертные радуются, что существовало такое украшение рода человеческого.

В честь Ньютона названы:

кратеры на Луне и на Марсе;

единица силы в системе СИ.

На статуе, воздвигнутой Ньютону в 1755 г. в Тринити-колледже, высечены стихи из Лукреция:

Qui genus humanum ingenio superavit (Разумом он превосходил род человеческий)

Научная деятельность

С работами Ньютона связана новая эпоха в физике и математике. В математике появляются мощные аналитические методы, происходит вспышка в развитии анализа и математической физики. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

По словам А. Эйнштейна, «Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности» и «… оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом».

Математический анализ

Ньютон разработал дифференциальное и интегральное исчисление одновременно с Г. Лейбницем (немного раньше) и независимо от него.

До Ньютона действия с бесконечно малыми не были увязаны в единую теорию и носили характер разрозненных остроумных приёмов (см. Метод неделимых), по крайней мере, отсутствовала опубликованная систематическая формулировка и не была достаточно выявлена мощь аналитических приемов к решению таких сложных задач, как задачи небесной механики в их полноте. Создание математического анализа сводит решение соответствующих задач, в значительной степени, до технического уровня. Появился комплекс понятий, операций и символов, ставший отправной базой дальнейшего развития математики. Следующий, XVIII век, стал веком бурного и чрезвычайно успешного развития аналитических методов.

Повидимому, Ньютон пришёл к идее анализа через разностные методы, которыми много и глубоко занимался. Правда, в своих «Началах» Ньютон почти не использовал бесконечно малых, придерживаясь античных (геометрических) приёмов доказательства, но в других трудах применял их свободно.

Отправной точкой для дифференциального и интегрального исчисления были работы Кавальери и особенно Ферма, который уже умел (для алгебраических кривых) проводить касательные, находить экстремумы, точки перегиба и кривизну кривой, вычислять площадь её сегмента. Из других предшественников сам Ньютон называл Валлиса, Барроу и шотландского астронома Джеймса Грегори. Понятия функции ещё не было, все кривые он трактовал кинематически как траектории движущейся точки.

Уже будучи студентом Ньютон понял, что дифференцирование и интегрирование - взаимно обратные операции (по-видимому, первая опубликованная работа, содержащая этот результат в форме детально разобранной двойственности задачи о площадях и задачи о касательных, принадлежит учителю Ньютона Барроу).

Ньютон почти 30 лет не заботился о публикации своего варианта анализа, хотя в письмах (в частности, к Лейбницу) охотно делится многим из достигнутого. Тем временем вариант Лейбница широко и открыто распространяется по Европе с 1676 года. Лишь в 1693 году появляется первое изложение варианта Ньютона - в виде приложения к «Трактату по алгебре» Валлиса. Приходится признать, что терминология и символика Ньютона по сравнению с лейбницевской довольно неуклюжи: флюксия (производная), флюэнта (первообразная), момент величины (дифференциал) и т. п. Сохранились в математике только ньютоновское обозначение «o» для бесконечно малой dt (впрочем, эту букву в том же смысле использовал ранее Грегори), да ещё точка над буквой как символ производной по времени.

Достаточно полное изложение принципов анализа Ньютон опубликовал только в работе «О квадратуре кривых» (1704), приложении к его монографии «Оптика». Почти весь изложенный материал был готов ещё в 1670-1680-е годы, но лишь теперь Грегори и Галлей уговорили Ньютона издать работу, которая, с опозданием на 40 лет, стала первым печатным трудом Ньютона по анализу. Здесь у Ньютона появляются производные высших порядков, найдены значения интегралов разнообразных рациональных и иррациональных функций, приведены примеры решения дифференциальных уравнений 1-го порядка.

1711: наконец напечатан, спустя 40 лет, «Анализ с помощью уравнений с бесконечным числом членов». Ньютон с одинаковой лёгкостью исследует как алгебраические, так и «механические» кривые (циклоиду, квадратрису). Появляются частные производные, но почему-то нет правила дифференцирования дроби и сложной функции, хотя Ньютону они были известны; впрочем, Лейбниц на тот момент их уже опубликовал.

В этом же году выходит «Метод разностей», где Ньютон предложил интерполяционную формулу для проведении через (n + 1) данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка. Это разностный аналог формулы Тейлора.

1736: посмертно издаётся итоговый труд «Метод флюксий и бесконечных рядов», существенно продвинутый по сравнению с «Анализом с помощью уравнений». Приводятся многочисленные примеры отыскания экстремумов, касательных и нормалей, вычисления радиусов и центров кривизны в декартовых и полярных координатах, отыскания точек перегиба и т. п. В этом же сочинении произведены квадратуры и спрямления разнообразных кривых.

Надо отметить, что Ньютон не только достаточно полно разработал анализ, но и сделал попытку строго обосновать его принципы. Если Лейбниц склонялся к идее актуальных бесконечно малых, то Ньютон предложил (в «Началах») общую теорию предельных переходов, которую несколько витиевато назвал «метод первых и последних отношений». Используется именно современный термин «предел» (limes), хотя внятное описание сущности этого термина отсутствует, подразумевая интуитивное понимание.

Теория пределов изложена в 11 леммах книги I «Начал»; одна лемма есть также в книге II. Арифметика пределов отсутствует, нет доказательства единственности предела, не выявлена его связь с бесконечно малыми. Однако Ньютон справедливо указывает на бо́льшую строгость такого подхода по сравнению с «грубым» методом неделимых.

Тем не менее в книге II, введя моменты (дифференциалы), Ньютон вновь запутывает дело, фактически рассматривая их как актуальные бесконечно малые.

Другие математические достижения

Первые математические открытия Ньютон сделал ещё в студенческие годы: классификация алгебраических кривых 3-го порядка (кривые 2-го порядка исследовал Ферма) и биномиальное разложение произвольной (не обязательно целой) степени, с которого начинается ньютоновская теория бесконечных рядов - нового и мощнейшего инструмента анализа. Разложение в ряд Ньютон считал основным и общим методом анализа функций, и в этом деле достиг вершин мастерства. Он использовал ряды для вычисления таблиц, решения уравнений (в том числе дифференциальных), исследования поведения функций. Ньютон сумел получить разложение для всех стандартных на тот момент функций.

В 1707 году выходит книга «Универсальная арифметика». В ней приведены разнообразные численные методы.

Ньютон всегда уделял большое внимание приближённому решению уравнений. Знаменитый метод Ньютона позволял находить корни уравнений с немыслимой ранее скоростью и точностью (опубликован в «Алгебре» Валлиса, 1685). Современный вид итерационному методу Ньютона придал Джозеф Рафсон (1690).

Примечательно, что теорией чисел Ньютон совершенно не интересовался. По всей видимости, физика ему была гораздо ближе математики.

Теория тяготения

Сама идея всеобщей силы тяготения неоднократно высказывалась и до Ньютона. Ранее о ней размышляли Эпикур, Кеплер, Декарт, Гюйгенс, Гук и другие. Кеплер полагал, что тяготение обратно пропорционально расстоянию до Солнца и распространяется только в плоскости эклиптики; Декарт считал его результатом вихрей в эфире. Были, впрочем, догадки с правильной формулой (Буллиальд, Рен, Гук), и даже достаточно серьезно обоснованные (с помощью соотнесения формулы центробежной силы Гюйгенса и третьего закона Кеплера для круговых орбит). Но до Ньютона никто не сумел ясно и математически доказательно связать закон тяготения (силу, обратно пропорциональную квадрату расстояния) и законы движения планет (законы Кеплера).

Важно отметить, что Ньютон опубликовал не просто предполагаемую формулу закона всемирного тяготения, но фактически предложил целостную математическую модель в контексте хорошо разработанного, полного, явно сформулированного и систематически изложенного подхода к механике:

закон тяготения;

закон движения (2-й закон Ньютона);

система методов для математического исследования (математический анализ).

В совокупности эта триада достаточна для полного исследования самых сложных движений небесных тел, тем самым создавая основы небесной механики. До Эйнштейна никаких принципиальных поправок к указанной модели не понадобилось, хотя математический аппарат был очень значительно развит.

Ньютоновская теория тяготения вызвала многолетние дебаты и критику концепции дальнодействия.

Первым аргументом в пользу ньютоновской модели послужил строгий вывод на её основе эмпирических законов Кеплера. Следующим шагом стала теория движения комет и Луны, изложенная в «Началах». Позже с помощью ньютоновского тяготения были с высокой точностью объяснены все наблюдаемые движения небесных тел; в этом большая заслуга Клеро и Лапласа.

Первые наблюдаемые поправки к теории Ньютона в астрономии (объяснённые ОТО) были обнаружены лишь более чем через 200 лет (смещение перигелия Меркурия). Впрочем, и они очень малы в пределах Солнечной системы.

Ньютон также открыл причину приливов: притяжение Луны (даже Галилей считал приливы центробежным эффектом). Более того, обработав многолетние данные о высоте приливов, он с хорошей точностью вычислил массу Луны.

Ещё одним следствием тяготения оказалась прецессия земной оси. Ньютон выяснил, что из-за сплюснутости Земли у полюсов земная ось совершает под действием притяжения Луны и Солнца постоянное медленное смещение с периодом 26000 лет. Тем самым древняя проблема «предварения равноденствий» (впервые отмеченная Гиппархом) нашла научное объяснение.

Оптика и теория света

Ньютону принадлежат фундаментальные открытия в оптике. Он построил первый зеркальный телескоп (рефлектор), в котором, в отличие от чисто линзовых телескопов, отсутствовала хроматическая аберрация. Он также открыл дисперсию света, показал, что белый свет раскладывается на цвета радуги вследствие различного преломления лучей разных цветов при прохождении через призму, и заложил основы правильной теории цветов.

В этот период было множество спекулятивных теорий света и цветности; в основном боролись точка зрения Аристотеля («разные цвета есть смешение света и тьмы в разных пропорциях») и Декарта («разные цвета создаются при вращении световых частиц с разной скоростью»). Гук в своей «Микрографии» (1665) предлагал вариант аристотелевских взглядов. Многие полагали, что цвет есть атрибут не света, а освещённого предмета. Всеобщий разлад усугубил каскад открытий XVII века: дифракция (1665, Гримальди), интерференция (1665, Гук), двойное лучепреломление (1670, Эразм Бартолин, изучено Гюйгенсом), оценка скорости света (1675, Рёмер), значительное усовершенствование телескопов. Теории света, совместимой со всеми этими фактами, не существовало.

В своём выступлении перед Королевским обществом Ньютон опроверг как Аристотеля, так и Декарта, и убедительно доказал, что белый свет не первичен, а состоит из цветных компонентов с разными углами преломления. Эти-то составляющие и первичны - никакими ухищрениями Ньютон не смог изменить их цвет. Тем самым субъективное ощущение цвета получало прочную объективную базу - показатель преломления.

Ньютон создал математическую теорию открытых Гуком интерференционных колец, которые с тех пор получили название «Кольца Ньютона».

В 1689 г. Ньютон прекратил исследования в области оптики - по распространённой легенде, поклялся ничего не печатать в этой области при жизни Гука, который постоянно донимал Ньютона болезненно воспринимаемой последним критикой. Во всяком случае, в 1704 году, на следующий год после смерти Гука, выходит в свет монография «Оптика». При жизни автора «Оптика», как и «Начала», выдержала три издания и множество переводов.

Книга первая монографии содержала принципы геометрической оптики, учение о дисперсии света и составе белого цвета с различными приложениями.

Книга вторая: интерференция света в тонких пластинках.

Книга третья: дифракция и поляризация света. Поляризацию при двойном лучепреломлении Ньютон объяснил ближе к истине, чем Гюйгенс (сторонник волновой природы света), хотя объяснение самого явления неудачное, в духе эмиссионной теории света.

Ньютона часто считают сторонником корпускулярной теории света; на самом деле он, по своему обыкновению, «гипотез не измышлял» и охотно допускал, что свет может быть связан и с волнами в эфире. В своей монографии Ньютон детально описывал математическую модель световых явлений, оставляя в стороне вопрос о физическом носителе света.

Другие работы в физике

Ньютону принадлежит первый вывод скорости звука в газе, основанный на законе Бойля-Мариотта.

Он предсказал сплюснутость Земли у полюсов, примерно 1:230. При этом Ньютон использовал для описания Земли модель однородной жидкости, применил закон всемирного тяготения и учёл центробежную силу. Одновременно аналогичные расчёты на сходных основаниях выполнил Гюйгенс,рассматривал тяготение таким, как будто его источник находится в центре планеты, так как, видимо, не верил в универсальный характер силы тяготения, то есть в конечном итоге не учел тяготения деформированного поверхностного слоя планеты. Соответственно Гюйгенс предсказал более чем вдвое меньшее сжатие, чем Ньютон, 1:576. Более того, Кассини и другие картезианцы доказывали, что Земля не сжата, а выпукла у полюсов наподобие лимона. Впоследствии, хотя и не сразу (первые измерения были неточны), прямые измерения (Клеро, 1743) подтвердили правоту Ньютона; реальное сжатие равно 1:298. Причина отличия этого значения от предложенного Ньютоном в сторону Гюйгенсовского состоит в том, что модель однородной жидкости всё же не вполне точна (плотность заметно возрастает с глубиной). Более точная теория, явно учитывающая зависимость плотности от глубины, была разработана только в XIX веке.

Прочие работы

Параллельно с изысканиями, закладывавшими фундамент нынешней научной (физической и математической) традиции, Ньютон много времени отдавал алхимии, а также богословию. Никаких трудов по алхимии он не издавал, и единственным известным результатом этого многолетнего увлечения стало серьёзное отравление Ньютона в 1691 году.

Парадоксально, что Ньютон, много лет трудившийся в Колледже святой Троицы, сам, видимо, в Троицу не верил. Исследователи его богословских работ, такие как Л. Мор, считают, что религиозные взгляды Ньютона были близки к арианству.

Ньютон предложил свой вариант библейской хронологии, оставив после себя значительное количество рукописей по данным вопросам. Кроме того, он написал комментарий на Апокалипсис. Теологические рукописи Ньютона ныне хранятся в Иерусалиме, в Национальной Библиотеке.

Тайные работы Исаака Ньютона

Как известно, незадолго до конца жизни Исаак опроверг все выдвинутые собой теории и сжёг документы, в которых содержалась тайна их опровержения: одни не сомневались, что всё было именно так, другие же полагают, что подобные действия были бы просто абсурдны и утверждают, что архив с документами цел, но только принадлежит избранным...

Деятельность Исаака Ньютона была комплексной - он работал одновременно в нескольких областях знания. Важным этапом деятельности Ньютона стали его математические , которые позволили улучшить систему расчета в рамках других . Важным открытием Ньютона стала основная теорема анализа. Она позволила доказать, что дифференциальное исчисление обратно интегральному и наоборот. Важную роль в развитии алгебры сыграло и открытие Ньютоном возможности биномиального разложения чисел. Также важную практическую роль сыграл метод Ньютона по извлечению корней из уравнений, который значительно упростил подобные вычисления.

Ньютоновская механика

Наиболее значительные открытия Ньютон сделал . Фактически от создал такой раздел физики, как механика. Им были сформированы 3 аксиомы механики, названные законами Ньютона. Первый закон, иначе называемый законом , гласит, что любое тело будет находиться в состоянии покоя или движения, пока к нему не будут приложены какие-либо силы. Второй закон Ньютона освещает проблему дифференциального движения и говорит о том, что ускорение тела прямо пропорционально равнодействующей приложенных к телу сил и обратно пропорционально массе тела. Третий закон описывает взаимодействие тел между собой. Ньютон формулировал его как тот факт, что для действия существует равное противодействие.

Законы Ньютона стали основой классической механики.

Но самым известным открытием Ньютона стал закон всемирного тяготения. Также он смог доказать, что силы гравитации распространяются не только на земные, но и на небесные тела. Эти законы были описаны в 1687 году после издания Ньютона, посвященной использованию математических методов в .

Закон тяготения Ньютона стал первой из возникших впоследствии многочисленных теорий гравитации.

Оптика

Ньютон немало времени посвятил такому разделу физики, как оптика. Он такой важный , как спектральное разложение цветов - с помощью линзы он научился преломлять белый свет на другие цвета. Благодаря Ньютону знания в оптике были систематизированы. Он создал важнейшее устройство - зеркальный телескоп, который повысил качество наблюдений за .

Следует отметить, что после открытий Ньютона оптика начала развиваться очень быстро. Он сумел обобщить такие открытия своих предшественников, как дифракция, двойное преломление луча и скорости света.

Изучая законы Ньютона в школе, некоторые ученики зазубривают лишь их теоретические данные и формулы, но абсолютно не интересуются, каким великим был человек, сделавший столь важные открытия. Ньютон сделал огромный вклад в развитие представлений человека об окружающем мире в XVIII веке.

Исаак Ньютон – известный английский математик и физик. Великий деятель науки родился 4 января 1643 года по григорианскому календарю (25 декабря 1642 год – по юлианскому летоисчислению) в небольшой Вулсторп в Англии.


Исаак Ньютон известен тем, что создал теоретические основы астрономии и механики. К числу его заслуг принадлежит изобретение зеркального телескопа, открытие закона всемирного тяготения, написание крайне важных исследовательских работ , а также разработка интегрального и дифференциального исчисления. Правда, последняя работа была проделана Ньютоном совместно с другим известным ученым Лейбницем. Исаак Ньютон считается основоположником «классической физики».


Великий ученый был выходцем из фермерской семьи. Маленький Исаак учился сначала в Грантемской школе, затем в Тринити-колледже Кембриджского университета. После его окончания будущему деятелю науки была присвоена степень бакалавра.


Самыми продуктивными годами на пути к большим открытиям были годы затворничества. Они выпали на 1665-1667 год, когда свирепствовала чума. В это время Ньютон вынужден был жить в Вулсторпе. Именно в этот период были сделаны важнейшие исследования. Например, открытие закона всемирного тяготения.


Похоронен Исаак Ньютон в Вестминстерском аббатстве. Дата смерти ученого определяется 31 марта 1727 года по григорианскому календарю (20 марта 1727 г. – юлианский стиль).


Доктор Ричард У. Хэмминг в своей лекции «Вы и ваши открытия» рассказал, как сделать великое открытие. Он подчеркнул, что на это способен любой среднестатистический человек. Главное – правильно прилагать усилия своего ума. Хэмминг обобщил свой опыт работы в компании Bell Labs, где бок о бок трудился с великими учеными современности.

Инструкция

Для начала необходимо отбросить все условности и задать себе один честный вопрос: «Почему бы мне не совершить нечто значительное в своей жизни?» На это способен любой человек. Главное – намерение.

Нужно перестать верить в удачу и поверить в то, что великое открытие – это результат усердной работы. «Удача благоволит подготовленному уму». Если ваш ум подготовлен, рано или поздно, вы добьетесь результата и поймаете свою удачу. Удача – это результат ваших усилий.

Чтобы сделать великое открытие, нужна смелость. Смелость выдвигать идеи и смелость их отстаивать. Смелость формулировать свои мысли и смелость задавать вопросы и задаваться вопросами.

Быть смелым в выражении своих мыслей можно лишь в том случае, если вы верите в то, что у вас получится сделать великое открытие.

Необходимо работать над небольшими задачами. Небольшими, но важными. Задачи должны быть вам по силам. Как только вы пытаетесь сходу решить глобальную проблему, вы терпите поражение. Помните, ум должен быть подготовленным.

Великое открытие нередко делается в условиях работы, которые принято считать сложными, неидеальными, некомфортными. Творческому процессу нужны рамки. Когда вы попадаете в сложные условия работы, важно не сдаваться. Важно думать, как их преодолеть. Искать решения, как недостаток можно сделать достоинством.

Исаак Ньютон - великий английский ученый-теоретик. Годы жизни Ньютона - 1642−1727. Жизнь не щадила великого гения. Много горя, боли и одиночества выпало на долю ученого. Финансовые трудности, давление общества, неприятие идей, смерть матери, умственное расстройство. Все пережил великий Ньютон и подарил миру свои гениальные идеи устройства мира и Вселенной. Краткая биография ученого представлена в этой статье.

Детство юного ученого

Ньютон родился в фермерской семье с небольшим достатком. За несколько месяцев до рождения его отец умер. Ребенок родился очень слабым и недоношенным . Все родственники полагали, что он не выживет. Детская смертность в те годы была просто чудовищной. Младенец был настолько мал, что помещался в рукавичке из шерсти. Из этой злосчастной рукавички мальчик выпадал два раза на пол и ударялся головой.

В трехлетнем возрасте мальчик остается на попечение дедушки и бабушки, так как мать второй раз выходит замуж и уезжает. Позже он воссоединится с мамой.

Исаак рос очень хилым, болезненным ребенком. Это была абсолютно интровертивная личность - «вещь в себе». Ребенок был очень любознательным, мастерил различные предметы: бумажных змеев, тележки с педалями, мельницы и так далее. Очень рано проснулся у него интерес к чтению. Он часто уединялся в саду с книгой и мог часами изучать материал.

В 1660 году Исаак поступил в Кембриджский университет. Он относился к числу необеспеченных студентов , поэтому помимо учебы в его обязанности входило прислуживать персоналу университета.

Изучение оптических явлений

В 1665 году Ньютону присвоили степень магистра искусств. В этом же году в Англии начинается эпидемия чумы. Исаак поселяется в Вулсторпе. Именно здесь он начинает изучать оптику, чтобы понимать природу света. Он изучает хроматическую аберрацию , ставит сотни опытов, которые стали классикой и используются в учебных заведениях до сих пор.

Изучая оптику, ученый на первых порах исповедовал волновую природу света . Свет в виде волн движется в эфире. Потом он отказался от этой теории, понимая, что эфир должен обладать некой степенью вязкости, которая бы препятствовала движению космических тел, чего не происходит в действительности.

Со временем ученый приходит к мысли о корпускулярной природе света. Он ставит эксперименты по преломлению света, процессам отражения и поглощения спектра.

Законы механики

Постепенно из опытов со светом начинает вырисовываться представление ученого о физике окружающего мира. Оно станет главным детищем И. Ньютона. Ньютон изучает материю и законы ее движения в пространстве:

  1. Благодаря исследованиям движения, он приходит к мысли, что если на объект нет никаких существенных воздействий, то он в пространстве будет двигаться равномерно и прямолинейно. Этот вывод называют первым законом Ньютона.
  2. Второй гласит, что движущиеся тела могут приобретать ускорение под действием сил, приложенных к этим телам. Ускорение прямо пропорционально силам, приложенным к телу, и обратно пропорционально массе. Именно из следствий этого закона исходит понимание проблем приложенных сил: что это за силы, как они действуют, как возникают.
  3. Ну и, наконец, третий закон - закон противодействия. Сила действия равна силе противодействия. С какой силой я давлю на стену, с такой же силой она давит на меня.

Закон всемирного тяготения

Одна из главных заслуг Ньютона заключается в открытии закона всемирного тяготения. Есть миф о том, что ученый сидел под яблоней в саду и ему на голову упало яблоко. Это осенило ученого: все тела тянутся друг к другу. Начались просчеты на бумаге, бесконечные формулы и, наконец, результат - сила притяжения между телами пропорциональна их массе и обратно пропорциональна квадрату расстояния между ними. Эта формула объясняла движение планет и космических тел. Многие физики встретили эту теорию в штыки, так как ее применение казалось весьма сомнительным.

Работа в Кембридже

После того как эпидемия чумы пошла на спад, Ньютон возвращается в Кембридж и поступает работать на кафедру математики в 1668 году. К этому времени он уже был известен в узких кругах как автор бинома, теории флюксий - интегрально исчисления.

Работая преподавателем, он занимается усовершенствованием телескопа - создает отражательный телескоп. Изобретение оценили представители Лондонского королевского общества . Ньютон получает приглашение стать его членом. Однако он отказывается под предлогом того, что ему нечем платить членские взносы. Ему было позволено быть членом клуба бесплатно.

В 1869 году мать Ньютона серьезно заболела тифом и была прикована к постели. Ньютон очень любил свою мать и проводил сутки напролет у постели больной. Он сам готовил ей лекарства, ухаживал за ней. Однако болезнь прогрессировала, и вскоре мать умерла.

Членство в обществе было мучительным для Ньютона. Его идеи часто воспринимались очень оппозиционно, что очень огорчало ученого. Это также сказалось на его здоровье. Постоянный стресс и переживание вылились в психическое расстройство. В 1692 году случился пожар и все его рукописи и наработки сгорели.

В этом же году Ньютон серьезно заболел. Два года он страдал умственным расстройством. Он перестал понимать собственные труды.

Постоянная нужда в деньгах и одиночество также послужили причиной его болезни.

В 1699 году Ньютона назначают смотрителем и директором монетного двора. Это поправило материальное положение ученого. А с 1703 года его избирают президентом Лондонского королевского общества с присвоением рыцарского звания.

Опубликованные труды

Перечислим основные труды ученого, которые были опубликованы:

  • «Математические начала натуральной философии»;
  • «Оптика».

Личная жизнь Ньютона

Всю свою жизнь Ньютон провел в одиночестве. Не сохранилось упоминаний о его партнерах и спутниках жизни. Считается, что Исаак всю жизнь был одинок. Это, конечно же, влияло на его сублимированное переключение сексуальной энергии в творческий потенциал. Но этот же факт служил основой его эмоциональных расстройств.

В зрелые годы ученый имел большой денежный достаток и очень щедро раздавал свои деньги нуждающимся. Он говорил: если не помогать людям при жизни, то это будет означать, что ты никому и никогда не помог. Он поддерживал всех своих дальних родственников, жертвовал деньги приходу, в котором он некоторое время воспитывался, назначал индивидуальные стипендии для талантливых и способных студентов (например, Маклорену - знаменитому математику).

Всю свою жизнь Исаак Ньютон отличался чрезвычайно скромностью и стеснительностью. Он долгое время не публиковал свои труды по этой причине. Имея чин директора Монетного двора, он был очень снисходителен со служащими. Никогда не грубил студентам и не унижал их. Хотя последние часто подтрунивали над профессором.

При жизни Исаак Ньютон фото не делал, так как в то время фотосъемка еще не была изобретена, но есть огромное количество портретов ученого.

С 1725 года Ньютон, будучи уже в преклонном возрасте, перестал работать. В 1727 году в Великобритании началась новая волна эпидемии чумы. Ньютон заболевает этой страшной болезнью и умирает. В Англии устраивают траур в честь великого ученого. Он похоронен в Вестминстерском аббатстве. На его надгробной плите есть надпись: «Пусть ныне живущие радуются, что в их мире была такая красота человеческого рода».




Великий английский физик Исаак Ньютон родился 25 декабря 1642 г., в день рождественского праздника в деревушке Вульсторп в Линкольншире. Отец его умер еще до рождения ребенка, мать родила его преждевременно и новорожденный Исаак был поразительно мал и хил. Исаак воспитывался в доме своей бабушки. В 12 лет он посещал общественную школу в Грэнтэме, учился слабо. Но зато рано проявил склонность к механике и изобретательству. Так, будучи мальчиком 14 лет он изобрел водяные часы и род самоката. В юности Ньютон любил живопись, поэзию и даже писал стихи. В 1656 г., когда Ньютону было 14 лет умер его отчим, священник Смит. Мать вернулась в Вульсторп и забрала Исаака к себе для помощи в делах. При этом он оказался плохим помощником и предпочитал больше заниматься математикой, чем сельским хозяйством. Его дядя как-то однажды нашел его под изгородью с книгой в руках, занятого решением математической задачи. Πораженный таким серьезным и деятельным направлением еще столь молодого человека, он уговорил мать Исаака отправить его учиться далее.
5 июня 1660 г., когда Ньютону еще не исполнилось 18 лет, он был принят в Тринити-Колледж. Кембриджский университет был в то время одним из лучших в Европе. Ньютон обратил внимание на математику, не столько ради самой науки, с которой был еще мало знаком, сколько потому, что был наслышан об астрономии и хотел проверить, стоит ли заниматься этой таинственной премудростью? О первых трех годах пребывания Ньютона в Кембридже известно немногое. В 1661 г. он был «субсайзером» (subsizzar), так назывались неимущие студенты, в обязанности которых входило прислуживать членам колледжа. Только в 1664 г. он стал настоящим студентом.
В 1665 г. он получил степень бакалавра изящных искусств. Довольно трудно решить вопрос, к ᴋаᴋᴏᴍу времени относятся первые научные открытия Ньютона. Можно только констатировать, что к достаточно раннему. В 1669 г. он получает Люкасовскую кафедру математики, которую до этого занимал его учитель Барроу. В это время Ньютон был уже автором бинома и метода флюксий, исследовал дисперсию света, сконструировал первый зеркальный телескоп, подошел к открытию закона тяготения. Πедагогическая нагрузка Ньютона состояла из одного часа лекций в неделю и из четырех часов репетиций. Как преподаватель он не пользовался популярностью и его лекции по оптике посещались плохо.
Сконструированный в 1671 г. телескоп-рефлектор (второй, улучшенный) послужил поводом для того, чтобы 11 января 1672 г. Ньютон был избран членом Лондонского Королевского общества. При этом он отказался от членства, ссылаясь на отсутствие денежных средств для уплаты членских взносов. Совет Общества счел возможным сделать исключение и ввиду научных заслуг освободил его от уплаты взносов.
Слава его как ученого постепенно росла. Но не чужд Ньютон был и общественной деятельности. Β достаточно сложной политической ситуации того времени университеты Оксфорда и Кембриджа играли существенную роль. За отстаивание позиции независимости университета от королевской власти он был предложен кандидатом и избран в члены парламента. В 1687 г. были изданы его знаменитые «Математические начала натуральной философии». При этом в 1692 г. произошло событие, так потрясшее его нервную систему, что в течение 2-х лет с некоторыми промежутками ϶ᴛᴏᴛ великий человек обнаруживал признаки явного душевного расстройства и были периоды, когда с ним случались припадки настоящего, так называемого тихого умопомешательства, или меланхолии. Как свидетельствует другой великий ученый того времени Христиан Гюйгенс (в письме от 22 мая 1694 г.): «Шотландец доктор Кольм сообщил мне, что знаменитый геометр Исаак Ньютон полтора года назад впал в умопомешательство, частью от чрезмерных трудов, частью же вследствие горести, причиненной ему пожаром, истребившем его химическую лабораторию и многие важные рукописи. Тогда друзья взяли его для лечения и, заключив в комнату, заставили принимать волею или неволею лекарства, от которых здоровье его поправилось настолько, что теперь он начинает уже понимать свою книгу «Начала..». К счастью, болезнь прошла бесследно.
Ньютону было уже 50 лет. Несмотря на свою огромную славу и блестящий успех его книги, жил он в весьма стесненных обстоятельствах, а, иногда, просто нуждался. В 1695 г., материальное положение его, впрочем, изменилось. Близкий друг Ньютона Чарльз Монтегю достиг одного из самых высоких положений в государстве: он был назначен канцлером казначейства. Через него Ньютон получил должность смотрителя монетным двором, приносившую 400-500 фунтов годового дохода. Πод его руководством в 2 года была перечеканена вся монета Англии. В 1699 г. он был назначен директором монетного двора (12-15 тыс. фунтов). Он оставил кафедру и переехал в Лондон окончательно. В 1703 г. Ньютон избирается президентом Королевского общества. В 1704 г. издается вторая по важности его книга. «Оптика». В 1705 г. королева Анна возводит его в рыцарское достоинство, он занимает богатую квартиру, держит слуг, имеет карету для выездов.20 марта 1727 г. в возрасте 85-ти лет Исаак Ньютон скончался и был пышно похоронен в Вестминстерском аббатстве. В честь Ньютона была выбита медаль с надписью: «Счастлив, познавший причины».

Основные открытия Ньютона

Открытие исчисления (анализа) бесконечно малых (дифференциального и интегрального исчисления).
Продолжатель Барроу - своего учителя по математике, Ньютон вводит понятия флюэнт и флюксий. Флюэнта - текущая, переменная величина. У всех флюэнт один аргумент - время. Флюксия - производная функции-флюэнты по времени, то есть флюксии - скорости изменения флюэнт. Флюксии приблизительно пропорциональны приращениям флюэнт, образующиеся в равные, весьма малые промежутки времени.
Был дан способ вычисления флюксий (нахождения производных), основанный на способе разложения в бесконечные ряды. Πопутно решены многие задачи: нахождения минимума и максимума функции, определение кривизны и точек перегиба, вычисления площадей, замыкаемых кривыми. Разработана Ньютоном и техника интегрирования (путем развертывания выражений в бесконечные ряды).
Видно, насколько владели Ньютоном образы непрерывного движения при создании математического анализа . Равномерно текущая независимая переменная у него, как правило, время. Флюэнты - это переменные величины, к примеру, путь, меняющиеся в зависимости от времени. Флюксии - скорости изменения этих величин. Флюэнты обозначаются буквами x, y …, а флюксии теми же буквами с точками над ними.
Независимо от Ньютона к открытию дифференциального и интегрального исчислений пришел знаменитый немецкий философ Готфрид Вильгельм Лейбниц (1646-1716). Между ними и их последователями даже состоялось судебное разбирательство о приоритете открытия анализа. Как выяснилось позже, Международную комиссию по разрешению спора, возглавлял сам Ньютон (тайно) и она признала его приоритет. Впоследствии оказалось, что школой Лейбница был разработан более красивый вариант анализа, но в варианте Ньютона более выражена и важна «физичность» метода. В общем, и Лейбниц и Ньютон работали независимо, но Ньютон раньше завершил работу, а Лейбниц раньше опубликовал. Сейчас в анализе используется в основном подход Лейбница, в том числе и его бесконечно малые числа, отдельное существование которых Ньютон не рассматривал.
Оптические исследования.
В этой области физики Ньютону принадлежат большие заслуги. «Оптика» - один из главных его трудов.
Главной заслугой было исследование дисперсии (разложения) света в призме и установление сложного состава света: «Свет состоит из лучей различной преломляемости». Πоказатель преломления зависит от цвета света. Ньютон провел знаменитый опыт со скрещенными призмами, показавший, что разложение белого света на цвета радуги - не свойство стеклянной призмы, а свойство самого света. Был выделен монохроматический свет. Главное, что цветность луча его изначальное и неизменное свойство. «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может измениться при отражениях и преломлениях»,
Созданный Ньютоном зеркальный телескоп-рефлектор - следствие убежденности Ньютона в принципиальной неустранимости хроматической аберрации линз вследствие дисперсии света в них. При этом Ньютон, что дисперсия одинакова для всех веществ.
Ньютон изучает цвета тонких пленок. Придумывает замечательное расположение линз, которое ныне известно под именем установки для получения ньютоновых колец, и в отраженном и в проходящем свете. Он установил, что квадраты диаметров колец возрастают в арифметической прогрессии нечетных или четных чисел. Тем самым он внес вклад в изучение явления интерференции света. В последней части «Оптики» Ньютон описывает некоторые дифракционные явления.
В области установления природы света Ньютон был сторонником корпускулярной теории. Собственно, он ее обосновал, в противовес волновой теории Гюйгенса.
Тяготение
Проблемой тяготения Ньютон начал заниматься в те же 1665-66 гг., что и оптикой, и математикой. Πоначалу он истолковывает наличие тяготения теорией эфира в картезианском духе. Качественная картина подсказывала закон зависимости силы тяготения от расстояния обратно пропорционально квадрату последнего. Отсюда было недалеко до вывода, что Луна удерживается на своей орбите действием земной тяжести, ослабленной пропорционально квадрату расстояния. Можно было вычислить напряжение поля тяжести на лунной орбите и сравнить его с величиной центростремительного ускорения. Πервые расчеты показали расхождения. Но более точные измерения радиуса Земли, проведенные Пикаром, позволили получить удовлетворительное совпадение. Луна, несомненно, непрерывно падает на Землю, одновременно удаляясь от нее равномерным движением по касательной.
Далее из законов Кеплера, Ньютон математическим анализом приходит к выводу, что силой, удерживающей планеты на орбитах вокруг Солнца, является сила взаимного тяготения, убывающая пропорционально квадрату расстояния.
Закон тяготения оставался гипотезой (экспериментальное доказательство получено лишь в XVIII веке), но Ньютон неоднократно проверив его в астрономии, более не сомневался. Ныне закон тяготения представлен компактной формулой: F=G m_1 m_2 /(r^2) . Этот закон дал динамическую основу всей небесной механике. Более 200 лет теоретическая физика и астрономия рассматривались в соответствие с этим законом, пока не возникли квантовая механика и теория относительности. Ньютон полагал его выведенным чисто индуктивным путем. Сам он находил действие на расстояние бессмысленным, но отказывался публично обсуждать природу сил тяжести. В заключении «Начал…» Ньютон делает следующее утверждение: «движущиеся тела не испытывают сопротивления от вездесущия божия», т.е. бог является посредником пр действии на расстоянии. «Причину … этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».
«Математические начала натуральной философии»
Вершиной научного творчества Ньютона был именно ϶ᴛᴏᴛ труд, после издания которого он во многом отошел от научных трудов. Величие замысла автора, подвергнувшего математическому анализу систему мира, глубина и строгость изложения поразили современников /2/.
В предисловии Ньютона (есть еще предисловие Котса, его ученика) мимоходом набрасывается программа механической физики: «Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления (так, в 1-х и 2-х книгах по наблюдаемым явлениям выводится закон действия центральных сил, и в третьей найденный закон применяется к описанию системы мира). Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все ϶ᴛᴎ явления обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».
«Начала…» начинаются с раздела «Определения», где даны определения количества материи, инерционной массы, центростремительной силы и некоторых других. Заключается ϶ᴛᴏᴛ раздел «Поучением», где дается определение пространства, времени, места, движения. Далее идет раздел аксиом движения, где даны знаменитые 3 закона механики Ньютона, законы движения и ближайшие следствия из них. Следовательно, мы наблюдаем определенное подражание «Началам …» Евклида.
Далее «Начала …» распадаются на 3 книги. Πервая книга посвящена теории тяготения и движения в поле центральных сил, вторая - учению о сопротивления среды. В третьей книге Ньютон изложил установленные законы движения планет, Луны, спутников Юпитера и Сатурна, дал динамическую интерпретацию законов, изложил «метод флюксий», показал, что сила, притягивающая к Земле камень, не отличается по своей природе от силы, удерживающей на орбите Луну, а ослабление притяжения связано только с увеличением расстояния.
Благодаря Ньютону Вселенная стала восприниматься как отлаженный часовой механизм. Регулярность и простота основных принципов, которыми объяснялись все наблюдаемые явления, расценивались Ньютоном как доказательство бытия бога: «Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе как по намерению и во власти премудрого и могущественного существа. Сей управляет всем не как душа мира, а как властитель Вселенной, и по господству своему должен именоваться Господь бог Вседержитель».
Литература
5. Жмудь Л.Я. Πифагор и его школа.- Л.: «Наука», 1990.
1. Гайденко П.П. Эволюция понятия науки. - М.: «Наука», 1980.
1. Гайденко П.П. Эволюция понятия науки (XVII - XVIII вв.) - М.: Наука, 1987.
2. Кудрявцев П.С. История физики. Т,1. - М.: Изд-во «Просвещение», 1956.
1. Рожанский И.Д. Развитие естествознания в эпоху античности. - М.: «Наука», 1979.
3. Аристотель. Физика. Собр. соч. Т.3. - М.: «Мысль», 1981.
Фрэзер Дж. Дж. Золотая ветвь: Исследование магии и религии. - М.: Политиздат, 1980.
4. Галилей Г. Избранные труды: В 2 т. - М.:Наука, 1964.
5. Койре А. Очерки истории философской мысли О влиянии философских концепций в развитии теорий. - М.: «Наука» 1985.

1. Галилео Галилей. Диалог о двух главнейших системах мира Птоломеевой и Коперниковой. - М.-Л.: « ОГИЗ», 1948.
2. Леонардо да Винчи. Избранные естественнонаучные произведения. - М, 1955.
3. Н. Кузанский. Сочинения в 2-х т. - М.: Мысль, 1979.
4. Н. Коперник О вращениях небесных сфер. - М.: Наука, 1964.
5. Дынник М.А. Мировоззрение Джордано Бруно. - М., 1949.
2. Спасский Б.И. История физики в « т. - М.: Изд-во МГУ, 1963.
3. Дорфман Я.Г. Всемирная история физики с древнейших времен до донца ХV111 в. - М: «Наука», 1974.
6. Философский энциклопедический словарь. - М.: «Советская энциклопедия», 1983.
7. Зубов В.П. Аристотель. - М., 1963.
1. Плутарх. Сравнительные жизнеописания. Т.1. - М.: Изд-во АН СССР, 1961. 2. Дильс Г. Античная техника. - М.-Л.: «ОПТИ», 1934.
3. Р. Ньютон Преступление Клавдия Птолемея. - М.: Наука, 1985
4. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.
2. Диоген Лаэртский. О жизни, учениях и изречениях знаменитых философов. - М.: «Мысль», 1986.
3. Платон. Диалоги. - М.: «Мысль», 1986.
4. Платон Собр. Соч. т.3. - М.: «Мысль», 1994
6. Гейзенберг В. Физика и философия. Часть и целое. - М.: Наука, 1989.
8. Спасский Б.И. История физики. В 2 т. - М.: Изд-во МГУ, 1963.
4. Ван-дер-Варден Б. Пробуждающаяся наука: Рождение астрономии. - М.: «Наука», 1991.
5. Ван-дер-Варден Б. Πробуждающаяся наука: математика древнего Египта, Вавилона и Греции. - М.: 1957.
8. Зайцев А.Н. Культурный переворот в Древней Греции V111 - V вв. до н.э. - Л., 1985.
1. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.

Исаак Ньютон появился на свет 4 января 1643 года в небольшой британской деревушке Вулсторп, располагавшейся на территории графства Линкольншир. Хилый, преждевременно покинувший лоно матери мальчик пришел в этот мир накануне Английской гражданской войны, вскоре после смерти своего отца и незадолго до празднования Рождества.

Ребенок был настолько слабым, что на протяжении долгого времени его даже не крестили. Но все же маленький Исаак Ньютон, названный так в честь своего отца, выжил и прожил очень долгую для семнадцатого века жизнь – 84 года.

Отец будущего гениального ученого был мелким фермером, однако довольно успешным и состоятельным. После смерти Ньютона-старшего его семья получила несколько сотен акров полей и лесных угодий с плодородной почвой и внушительную сумму размером в 500 фунтов стерлингов.

Мать Исаака, Анна Эйскоу, вскоре снова вышла замуж и родила своему новому супругу троих детей. Анна уделяла больше внимания младшим отпрыскам, а воспитанием ее первенца поначалу занималась бабушка Исаака, а потом его дядя Уильям Эйскоу.

В детстве Ньютон увлекался живописью, поэзией, самозабвенно изобретал водяные часы, ветряную мельницу, мастерил бумажных змеев. При этом он по-прежнему был весьма болезненным, а также крайне необщительным: веселым играм со сверстниками Исаак предпочитал собственные увлечения.


Физик в молодости

Когда ребенка отправили в школу, его физическая слабость и плохие коммуникативные навыки однажды даже стали причиной того, что мальчика избили до полуобморочного состояния. Это унижение Ньютон стерпеть не мог. Но, конечно, в одночасье приобрести атлетическую физическую форму он не мог, поэтому мальчик решил тешить свое самоуважение иначе.

Если до этого случая он достаточно плохо учился и явно не был любимчиком учителей, то после начал серьезно выделяться по успеваемости среди своих одноклассников. Постепенно он стал лучшим учеником, а также еще серьезнее, чем до этого, начал интересоваться техникой, математикой и удивительными, необъяснимыми явлениями природы.


Когда Исааку исполнилось 16 лет, мать забрала его обратно в поместье и попыталась возложить на повзрослевшего старшего сына часть забот по ведению хозяйства (второй муж Анны Эйскоу к тому времени тоже скончался). Однако парень только и занимался тем, что конструировал хитроумные механизмы, «проглатывал» многочисленные книги и писал стихи.

Школьный учитель молодого человека, мистер Стокс, а также его дядя Уильям Эйскоу и знакомый Хэмфри Бабингтон (по совместительству – член Кембриджского Тринити-колледжа) из Грэнтема, где будущий всемирно известный ученый посещал школу, уговорили Анну Эйскоу позволить одаренному сыну продолжить обучение. В результате коллективных уговоров в 1661 году Исаак завершил учебу в школе, после чего успешно выдержал вступительные экзамены в Кембриджский университет.

Начало научной карьеры

Как студент Ньютон имел статус «sizar». Это означало, что он не платил за свое образование, однако должен был выполнять в университете разноплановые работы, либо оказывать услуги более богатым студентам. Исаак мужественно выдержал это испытание, хотя по-прежнему крайне не любил чувствовать себя угнетенным, был нелюдим и не умел заводить друзей.

В то время философию и естествознание в знаменитом на весь мир Кембридже преподавали по , хотя на тот момент миру уже были продемонстрированы открытия Галилея, атомистическая теория Гассенди, смелые труды Коперника, Кеплера и других выдающихся ученых. Исаак Ньютон с жадностью поглощал всю возможную информацию по математике, астрономии, оптике, фонетике и даже теории музыки, какую только мог найти. При этом он нередко забывал про еду и сон.


Исаак Ньютон изучает преломление света

Самостоятельную научную деятельность исследователь начал в 1664 году, составив перечень из 45 проблем в человеческой жизни и природе, которые пока не были решены. Тогда же судьба свела студента с одаренным математиком Исааком Барроу, который начал работать на математической кафедре колледжа. Впоследствии Барроу стал его учителем, а также одним из немногих друзей.

Еще сильнее заинтересовавшись математикой благодаря одаренному преподавателю, Ньютон выполнил биномиальное разложение для произвольного рационального показателя, которое стало его первым блестящим открытием в математической области. В том же году Исаак получил звание бакалавра.


В 1665-1667 годах, когда по Англии прокатилась чума, Великий Лондонский пожар и крайне затратная война с Голландией, Ньютон ненадолго осел в Вусторпе. В эти годы он направил свою основную деятельность на открытие оптических тайн. Пытаясь выяснить, как избавить линзовые телескопы от хроматической аберрации, ученый пришел к исследованию дисперсии. Суть экспериментов, которые ставил Исаак, была в стремлении познать физическую природу света, и многие из них до сих пор проводят в учреждениях образования.

В результате Ньютон пришел к корпускулярной модели света, решив, что его можно рассматривать как поток частиц, которые вылетают из некоторого источника света и осуществляют прямолинейное движение до ближайшего препятствия. Такая модель хоть и не может претендовать на предельную объективность, однако стала одной из основ классической физики, без которой не появились бы и более современные представления о физических явлениях.


Среди любителей собирать интересные факты давно бытует заблуждение о том, что этот ключевой закон классической механики Ньютон открыл после того, как ему на голову упало яблоко. В действительности Исаак планомерно шел к своему открытию, что понятно из его многочисленных записей. Легенду о яблоке популяризовал авторитетный в те времена философ Вольтер.

Научная известность

В конце 1660-ых годов Исаак Ньютон вернулся в Кембридж, где получил статус магистра, собственную комнату для жизни и даже группу юных студентов, у которых ученый стал преподавателем. Впрочем, преподавание явно не было «коньком» одаренного исследователя, и посещаемость его лекций заметно хромала. Тогда же ученый изобрел телескоп-рефлектор, который прославил его и позволил Ньютону вступить в Лондонское королевское общество. Посредством данного приспособления было сделано множество потрясающих астрономических открытий.


В 1687 году Ньютон опубликовал, пожалуй, самую важную свою работу – труд под названием «Математические начала натуральной философии». Исследователь и до этого издавал свои труды, но этот имел первостепенное значение: он стал основной рациональной механики и всего математического естествознания. Здесь содержался хорошо всем известный закон всемирного тяготения, три известных до сих пор закона механики, без которых немыслима классическая физика, вводились ключевые физические понятия, не подвергалась сомнениям гелиоцентрическая система Коперника.


По математическому и физическому уровню «Математические начала натуральной философии» были на порядок выше, чем изыскания всех ученых, работавших над этой проблемой до Исаака Ньютона. Здесь не было недоказанной метафизики с пространными рассуждениями, безосновательными законами и неясными формулировками, которой так грешили работы Аристотеля и Декарта.

В 1699 году, когда Ньютон работал на административных должностях, в университете Кембриджа начали преподавать его систему мира.

Личная жизнь

Женщины ни тогда, ни с годами не проявляли особой симпатии к Ньютону, и за всю свою жизнь он ни разу не женился.


Смерть великого ученого наступила в 1727 году, причем на его похороны собрался практически весь Лондон.

Законы Ньютона

  • Первый закон механики: всякое тело покоится или остается в состоянии равномерного поступательного движения, пока этот состояние не будет скорректировано приложением внешних сил.
  • Второй закон механики: изменение импульса пропорционально приложенной силе и осуществляется по направлению ее воздействия.
  • Третий закон механики: материальные точки взаимодействуют друг с другом по прямой, их соединяющей, с равными по модулю и противоположными по направлению силами.
  • Закон всемирного тяготения: сила гравитационного притяжения между двумя материальными точками пропорциональна произведению их масс, умноженному на гравитационную постоянную, и обратно пропорциональна квадрату расстояния между этими точками.

Top