Как разделить десятичную дробь на натуральное. Деление десятичных дробей на натуральные числа — Гипермаркет знаний

Рано или поздно, все дети в школе начинают изучать дроби: их сложение, деление, умножение и все возможные действия, которые только возможно выполнять с дробями. Чтобы оказать должную помощь ребенку, родителям самим не стоит забывать, как происходит деление целых чисел на дроби, иначе, вы не сможете ему ничем помочь, а лишь запутаете. Если вам понадобилось вспомнить данное действие, но вы никак не можете свести всю информацию в голове в единое правило, то данная статья вам поможет: вы научитесь делить число на дробь и увидите наглядные примеры.

Как разделить число на дробь

Запишите свой пример на черновик, чтобы у вас была возможность делать заметки и помарки. Помните, что целое число записывается между клеток, прямо на их пересечении, а дробные числа – каждая в своей клетке.

  • В данном способе вам нужно перевернуть дробь вверх ногами, то есть, знаменатель записать в числитель, а числитель – в знаменатель.
  • Знак деления нужно поменять на умножение.
  • Теперь вам осталось выполнить умножение по уже изученным правилам: числитель умножается на целое число, а знаменатель не трогаете.

Конечно, в результате такого действия у вас получится очень большое число в числителе. В таком состоянии оставлять дробь нельзя – учитель попросту не примет этот ответ. Сократите дробь, разделив числитель на знаменатель. Целое число, которое получится в результате, запишите слева от дроби посередине клеток, а остаток и будет новым числителем. Знаменатель остается неизменным.

Этот алгоритм довольно прост, даже для ребенка. Выполнив его пять-шесть раз, малыш запомнит порядок действия и сможет применять его к любым дробям.

Как разделить число на десятичную дробь

Бывают дроби другого вида – десятичные. Деление на них происходит по совсем другому алгоритму. Если вы столкнулись с таким примером, то придерживайтесь инструкции:

  • Для начала, превратите оба числа в десятичные дроби. Сделать это просто: делитель у вас и так представлен в виде дроби, а делимое натуральное число вы отделяете запятой, получая десятичную дробь. То есть, если делимое было числом 5, вы получаете дробь 5,0. Отделять число нужно на столько цифр, сколько стоит после запятой и делителя.
  • После этого, обе десятичные дроби вы должны сделать натуральными числами. Сперва, вам покажется это немного запутанным, но это самый быстрый способ деления, который будет занимать у вас секунды, после нескольких тренировок. Дробь 5,0 станет числом 50, дробь 6,23 будет 623.
  • Выполните деление. Если числа получились большие, либо деление будет происходить с остатком, выполните его в столбик. Так вы наглядно увидите все действия данного примера. Вам не нужно специально ставить запятую, так как она сама появится в процессе деления в столбик.

Данный вид деления изначально кажется слишком запутанным, так как вам нужно превратить делимое и делитель в дробь, а потом снова в натуральные числа. Но после недолгой тренировки, вы сразу станете видеть те числа, которые нужно просто разделить друг на друга.

Помните, что умение правильно делить дроби и целые числа на них могут ни раз пригодиться в жизни, поэтому, знать эти правила и простые принципы ребенку нужно идеально, чтобы в более старших классах они не стали камнем преткновения, из-за которого ребенок не может решать более сложные задачи.


На прошлом уроке мы научились складывать и вычитать десятичные дроби (см. урок «Сложение и вычитание десятичных дробей »). Заодно оценили, насколько упрощаются вычисления по сравнению с обычными «двухэтажными» дробями.

К сожалению, с умножением и делением десятичных дробей подобного эффекта не возникает. В некоторых случаях десятичная запись числа даже усложняет эти операции.

Для начала введем новое определение. Мы будем встречаться с ним довольно часто, и не только на этом уроке.

Значащая часть числа - это все, что находится между первой и последней ненулевой цифрой, включая концы. Речь идет только о цифрах, десятичная точка не учитывается.

Цифры, входящие в значащую часть числа, называются значащими цифрами. Они могут повторяться и даже быть равными нулю.

Например, рассмотрим несколько десятичных дробей и выпишем соответствующие им значащие части:

  1. 91,25 → 9125 (значащие цифры: 9; 1; 2; 5);
  2. 0,008241 → 8241 (значащие цифры: 8; 2; 4; 1);
  3. 15,0075 → 150075 (значащие цифры: 1; 5; 0; 0; 7; 5);
  4. 0,0304 → 304 (значащие цифры: 3; 0; 4);
  5. 3000 → 3 (значащая цифра всего одна: 3).

Обратите внимание: нули, стоящие внутри значащей части числа, никуда не деваются. Мы уже сталкивались с чем-то подобным, когда учились переводить десятичные дроби в обычные (см. урок «Десятичные дроби »).

Этот момент настолько важен, а ошибки здесь допускают так часто, что в ближайшее время я опубликую тест на эту тему. Обязательно потренируйтесь! А мы, вооружившись понятием значащей части, приступим, собственно, к теме урока.

Умножение десятичных дробей

Операция умножения состоит из трех последовательных шагов:

  1. Для каждой дроби выписать значащую часть. Получатся два обычных целых числа - без всяких знаменателей и десятичных точек;
  2. Умножить эти числа любым удобным способом. Напрямую, если числа невелики, или столбиком. Получим значащую часть искомой дроби;
  3. Выяснить, куда и на сколько разрядов сдвигается десятичная точка в исходных дробях для получения соответствующей значащей части. Выполнить обратные сдвиги для значащей части, полученной на предыдущем шаге.

Еще раз напомню, что нули, стоящие по бокам от значащей части, никогда не учитываются. Игнорирование этого правила приводит к ошибкам.

  1. 0,28 · 12,5;
  2. 6,3 · 1,08;
  3. 132,5 · 0,0034;
  4. 0,0108 · 1600,5;
  5. 5,25 · 10 000.

Работаем с первым выражением: 0,28 · 12,5.

  1. Выпишем значащие части для чисел из этого выражения: 28 и 125;
  2. Их произведение: 28 · 125 = 3500;
  3. В первом множителе десятичная точка сдвинута на 2 цифры вправо (0,28 → 28), а во второй - еще на 1 цифру. Итого нужен сдвиг влево на три цифры: 3500 → 3,500 = 3,5.

Теперь разберемся с выражением 6,3 · 1,08.

  1. Выпишем значащие части: 63 и 108;
  2. Их произведение: 63 · 108 = 6804;
  3. Снова два сдвига вправо: на 2 и 1 цифру соответственно. Всего - снова 3 цифры вправо, поэтому обратный сдвиг будет на 3 цифры влево: 6804 → 6,804. В этот раз нулей на конце нет.

Добрались до третьего выражения: 132,5 · 0,0034.

  1. Значащие части: 1325 и 34;
  2. Их произведение: 1325 · 34 = 45 050;
  3. В первой дроби десятичная точка уходит вправо на 1 цифру, а во второй - на целых 4. Итого: 5 вправо. Выполняем сдвиг на 5 влево: 45 050 → ,45050 = 0,4505. В конце убрали ноль, а спереди - дописали, чтобы не оставлять «голую» десятичную точку.

Следующее выражение: 0,0108 · 1600,5.

  1. Пишем значащие части: 108 и 16 005;
  2. Умножаем их: 108 · 16 005 = 1 728 540;
  3. Считаем цифры после десятичной точки: в первом числе их 4, во втором - 1. Всего - снова 5. Имеем: 1 728 540 → 17,28540 = 17,2854. В конце убрали «лишний» ноль.

Наконец, последнее выражение: 5,25 · 10 000.

  1. Значащие части: 525 и 1;
  2. Умножаем их: 525 · 1 = 525;
  3. В первой дроби выполнен сдвиг на 2 цифры вправо, а во второй - на 4 цифры влево (10 000 → 1,0000 = 1). Итого 4 − 2 = 2 цифры влево. Выполняем обратный сдвиг на 2 цифры вправо: 525, → 52 500 (пришлось дописать нули).

Обратите внимание на последний пример: поскольку десятичная точка перемещается в разных направлениях, суммарный сдвиг находится через разность. Это очень важный момент! Вот еще пример:

Рассмотрим числа 1,5 и 12 500. Имеем: 1,5 → 15 (сдвиг на 1 вправо); 12 500 → 125 (сдвиг на 2 влево). Мы «шагаем» на 1 разряд вправо, а затем - на 2 влево. В итоге, мы шагнули на 2 − 1 = 1 разряд влево.

Деление десятичных дробей

Деление - это, пожалуй, самая сложная операция. Конечно, здесь можно действовать по аналогии с умножением: делить значащие части, а затем «двигать» десятичную точку. Но в этом случае возникает много тонкостей, которые сводят на нет потенциальную экономию.

Поэтому давайте рассмотрим универсальный алгоритм, который чуть-чуть длиннее, но намного надежнее:

  1. Перевести все десятичные дроби в обычные. Если немного потренироваться, на этот шаг у вас будут уходить считанные секунды;
  2. Разделить полученные дроби классическим способом. Другими словами, умножить первую дробь на «перевернутую» вторую (см. урок «Умножение и деление числовых дробей »);
  3. Если возможно, результат снова представить в виде десятичной дроби. Этот шаг тоже выполняется быстро, поскольку зачастую в знаменателе уже стоит степень десятки.

Задача. Найдите значение выражения:

  1. 3,51: 3,9;
  2. 1,47: 2,1;
  3. 6,4: 25,6:
  4. 0,0425: 2,5;
  5. 0,25: 0,002.

Считаем первое выражение. Для начала переведем оби дроби в десятичные:

Аналогично поступим со вторым выражением. Числитель первой дроби снова разложится на множители:

В третьем и четвертом примерах есть важный момент: после избавления от десятичной записи возникают сократимые дроби. Однако мы не будем выполнять это сокращение.

Последний пример интересен тем, что в числителе второй дроби стоит простое число. Здесь просто нечего разлагать на множители, поэтому считаем «напролом»:

Иногда в результате деления получается целое число (это я про последний пример). В таком случае третий шаг вообще не выполняется.

Кроме того, при делении часто возникают «некрасивые» дроби, которые нельзя перевести в десятичные. Этим деление отличается от умножения, где результаты всегда представимы в десятичной форме. Разумеется, в таком случае последний шаг опять же не выполняется.

Обратите также внимание на 3-й и 4-й примеры. В них мы намеренно не сокращаем обычные дроби, полученные из десятичных. Иначе это усложнит обратную задачу - представление конечного ответа снова в десятичном виде.

Запомните: основное свойство дроби (как и любое другое правило в математике) само по себе еще не означает, что его надо применять везде и всегда, при каждом удобном случае.

Вы знаете, что разделить натуральное число a на натуральное число b − значит найти такое натуральное число c, которое при умножении на b дает число a. Это утверждение остается верным, если хотя бы одно из чисел a, b, c является десятичной дробью.

Рассмотрим несколько примеров, в которых делителем является натуральное число.

1,2 : 4 = 0,3 , так как 0,3 * 4 = 1,2 ;

2,5 : 5 = 0,5 , так как 0,5 * 5 = 2,5 ;

1 : 2 = 0,5 , так как 0,5 * 2 = 1 .

А как быть в тех случаях, когда деление не удается выполнить устно?

Например, как разделить 43,52 на 17 ?

Увеличив делимое 43,52 в 100 раз, получим число 4 352 . Тогда значение выражения 4 352 : 17 в 100 раз больше значения выражения 43,52 : 17 . Выполнив деление уголком, вы легко установите, что 4 352 : 17 = 256 . Здесь делимое увеличено в 100 раз. Значит, 43,52 : 17 = 2,56 . Заметим, что 2,56 * 17 = 43,52 , что подтверждает правильность выполнения деления.

Частное 2,56 можно получит иначе. Будем делить 4352 на 17 уголком, не обращая внимания на запятую. При этом запятую в частном следует поставить непосредственно перед тем, как будет использована первая цифра после запятой в делимом:

Если делимое меньше делителя, то целая часть частного равна нулю. Например:

Рассмотрим еще один пример. Найдем частное 3,1 : 5 . Имеем:

Мы остановили процесс деления, потому что цифры делимого закончились, а в остатке нуль не получили. Вы знаете, что десятичная дробь не изменится, если к ней справа приписать любое количество нулей. Тогда становится понятным, что цифры делимого закончиться не могут. Имеем:

Теперь мы можем находить частное двух натуральных чисел, когда делимое не делится нацело на делитель. Например, найдем частное 31 : 5 . Очевидно, что число 31 не делится нацело на 5 :

Мы остановили процесс деления, потому что цифры делимого закончились. Однао если представить делимое в виде десятичной дроби, то деление можно продолжить.

Имеем: 31 : 5 = 31,0 : 5 . Далее выполним деление уголком:

Следовательно, 31 : 5 = 6,2 .

В предыдущем параграфе мы выяснили, что если запятую перенести вправо на 1, 2, 3 и т.д. цифры, то дробь увеличится соответственно в 10, 100, 1 000 и т. д. раз, а если запятую перенести влево на 1, 2, 3 и т. д. цифры, то дробь уменьшится соответственно в 10, 100, 1 000 и т. д. раз.

Поэтому в тех случаях, когда делитель равен 10, 100, 1 000 и т. д., пользуются следующим правилом.

Чтобы разделить десятичную дробь на 10, 100, 1 000 и т. д., надо в этой дроби перенести запятую влево на 1, 2, 3 и т. д. цифры .

Например: 4,23 : 10 = 0,423 ; 2 : 100 = 0,02 ; 58,63 : 1 000 = 0,05863 .

Итак, мы научились делить десятичную дробь на натуральное число.

Покажем, как деление на десятичную дробь можно свести к делению на натуральное число.

$\frac{2}{5} км = 400 м$

,

$\frac{20}{50} км = 400 м$

,

$\frac{200}{500} км = 400 м$

.

Получаем, что

$\frac{2}{5} = \frac{20}{50} = \frac{200}{500}$

Т.е. 2 : 5 = 20 : 50 = 200 : 500 .

Этот пример иллюстрирует следующее: если делимое и делитель увеличить одновременно в 10, 100, 1 000 и т.д. раз, то частное не изменится .

Найдем частное 43,52 : 1,7 .

Увеличим одновременно делимое и делитель в 10 раз. Имеем:

43,52 : 1,7 = 435,2 : 17 .

Увеличим одновременно делимое и делитель в 10 раз. Имеем: 43,52 : 1,7 = 25,6 .

Чтобы разделить десятичную дробь на десятичную надо:

1 ) перенести в делимом и в делителе запятые вправо на столько цифр, сколько их содержится после запятой в делителе;

2 ) выполнить деление на натуральное число .

Пример 1 . Ваня собрал 140 кг яблок и груш, из них 0,24 составляли груши. Сколько килограммов груш собрал Ваня?

Решение. Имеем:

$0,24=\frac{24}{100}$

.

1 ) 140 : 100 = 1,4 (кг) − составляет

Яблок и груш.

2 ) 1,4 * 24 = 33,6 (кг) − груш было собрано.

Ответ: 33,6 кг.

Пример 2 . На завтрак Винни−Пух съел 0,7 бочонка меда. Сколько килограммов меда было в бочонке, если Винни−Пух съел 4,2 кг?

Решение. Имеем:

$0,7=\frac{7}{10}$

.

1 ) 4,2 : 7 = 0,6 (кг) − составляет

Всего меда.

2 ) 0,6 * 10 = 6 (кг) −меда было в бочонке.

Ответ: 6 кг.


Рассмотрим примеры деления десятичных дробей в этом свете.

Пример.

Выполните деление десятичной дроби 1,2 на десятичную дробь 0,48 .

Решение.

Ответ:

1,2:0,48=2,5 .

Пример.

Разделите периодическую десятичную дробь 0,(504) на десятичную дробь 0,56 .

Решение.

Переведем периодическую десятичную дробь в обыкновенную : . Также переведем конечную десятичную дробь 0,56 в обыкновенную, имеем 0,56=56/100 . Теперь мы можем перейти от деления исходных десятичных дробей к делению обыкновенных дробей и закончить вычисления: .

Переведем полученную обыкновенную дробь в десятичную дробь, выполнив деление числителя на знаменатель столбиком:

Ответ:

0,(504):0,56=0,(900) .

Принцип деления бесконечных непериодических десятичных дробей отличается от принципа деления конечных и периодических десятичных дробей, так как непериодические десятичные дроби не могут быть переведены в обыкновенные дроби. Деление бесконечных непериодических десятичных дробей сводится к делению конечных десятичных дробей, для чего проводится округление чисел до некоторого разряда. Причем, если одним из чисел, с которыми проводится деление, является конечная или периодическая десятичная дробь, то она тоже округляются до того же разряда, что и непериодическая десятичная дробь.

Пример.

Разделите бесконечную непериодическую десятичную дробь 0,779… на конечную десятичную дробь 1,5602 .

Решение.

Сначала нужно округлить десятичные дроби, чтобы от деления бесконечной непериодической десятичной дроби перейти к делению конечных десятичных дробей. Мы можем провести округление до сотых: 0,779…≈0,78 и 1,5602≈1,56 . Таким образом, 0,779…:1,5602≈0,78:1,56= 78/100:156/100=78/100·100/156= 78/156=1/2=0,5 .

Ответ:

0,779…:1,5602≈0,5 .

Деление натурального числа на десятичную дробь и наоборот

Суть подхода к делению натурального числа на десятичную дробь и к делению десятичной дроби на натуральное число ничем не отличается от сути деления десятичных дробей. То есть, конечные и периодические дроби заменяются обыкновенными дробями, а бесконечные непериодические дроби округляются.

Для иллюстрации рассмотрим пример деления десятичной дроби на натуральное число.

Пример.

Выполните деление десятичной дроби 25,5 на натуральное число 45 .

Решение.

Заменив десятичную дробь 25,5 обыкновенной дробью 255/10=51/2 , деление сводится к делению обыкновенной дроби на натуральное число : . Полученная дробь в десятичной записи имеет вид 0,5(6) .

Ответ:

25,5:45=0,5(6) .

Деление десятичной дроби на натуральное число столбиком

Деление конечных десятичных дробей на натуральные числа удобно проводить столбиком по аналогии с делением столбиком натуральных чисел . Приведем правило деления.

Чтобы разделить десятичную дробь на натуральное число столбиком , надо:

  • дописать справа в делимой десятичной дроби несколько цифр 0 , (в процессе деления при необходимости можно дописать еще любое количество нулей, но эти нули могут и не понадобиться);
  • выполнить деление столбиком десятичной дроби на натуральное число по всем правилам деления столбиком натуральных чисел, но когда закончится деление целой части десятичной дроби, то в частном нужно поставить запятую и продолжить деление.

Сразу скажем, что в результате деления конечной десятичной дроби на натуральное число может получиться или конечная десятичная дробь или бесконечная периодическая десятичная дробь. Действительно, после того, как закончится деление всех отличных от 0 десятичных знаков делимой дроби, может получиться либо остаток 0 , и мы получим конечную десятичную дробь, либо остатки начнут периодически повторяться, и мы получим периодическую десятичную дробь.

Разберемся со всеми тонкостями деления десятичных дробей на натуральные числа столбиком при решении примеров.

Пример.

Разделите десятичную дробь 65,14 на 4 .

Решение.

Выполним деление десятичной дроби на натуральное число столбиком. Допишем пару нулей справа в записи дроби 65,14 , при этом получим равную ей десятичную дробь 65,1400 (смотрите равные и неравные десятичные дроби). Теперь можно приступать к делению столбиком целой части десятичной дроби 65,1400 на натуральное число 4 :

На этом деление целой части десятичной дроби закончено. Здесь в частном нужно поставить десятичную запятую и продолжить деление:

Мы пришли к остатку 0 , на этом этапе деление столбиком заканчивается. В итоге имеем 65,14:4=16,285 .

Ответ:

65,14:4=16,285 .

Пример.

Выполните деление 164,5 на 27 .

Решение.

Проведем деление десятичной дроби на натуральное число столбиком. После деления целой части получаем следующую картину:

Теперь ставим в частном запятую и продолжаем деление столбиком:

Сейчас хорошо видно, что начали повторяться остатки 25 , 7 и 16 , при этом в частном повторяются цифры 9 , 2 и 5 . Таким образом, деление десятичной дроби 164,5 на 27 приводит нас к периодической десятичной дроби 6,0(925) .

Ответ:

164,5:27=6,0(925) .

Деление десятичных дробей столбиком

К делению десятичной дроби на натуральное число столбиком можно свести деление десятичной дроби на десятичную дробь. Для этого делимое и делитель нужно умножить на такое число 10 , или 100 , или 1 000 , и т.д., чтобы делитель стал натуральным числом, после чего выполнить деление на натуральное число столбиком. Это мы можем делать в силу свойств деления и умножения, так как a:b=(a·10):(b·10) , a:b=(a·100):(b·100) и так далее.

Иными словами, чтобы разделить конечную десятичную дробь на конечную десятичную дробь , нужно:

  • в делимом и делителе перенести запятую вправо на столько знаков, сколько их после запятой в делителе, если при этом в делимом не хватает знаков для переноса запятой, то нужно дописать необходимое количество нулей справа;
  • после этого провести деление столбиком десятичной дроби на натуральное число.

Рассмотрим при решении примера применение этого правила деления на десятичную дробь.

Пример.

Выполните деление столбиком 7,287 на 2,1 .

Решение.

Перенесем запятую в данных десятичных дробях на одну цифру вправо, это нам позволит от деления десятичной дроби 7,287 на десятичную дробь 2,1 перейти к делению десятичной дроби 72,87 на натуральное число 21 . Выполним деление столбиком:

Ответ:

7,287:2,1=3,47 .

Пример.

Выполните деление десятичной дроби 16,3 на десятичную дробь 0,021 .

Решение.

Перенесем вправо на 3 знака запятую в делимом и делителе. Очевидно, в делителе не хватает цифр для переноса запятой, поэтому допишем необходимое количество нулей справа. Теперь выполним деление столбиком дроби 16300,0 на натуральное число 21 :

С этого момента начинают повторяться остатки 4 , 19 , 1 , 10 , 16 и 13 , а значит, будут повторяться и цифры 1 , 9 , 0 , 4 , 7 и 6 в частном. В результате мы получаем периодическую десятичную дробь 776,(190476) .

Ответ:

16,3:0,021=776,(190476) .

Заметим, что озвученное правило позволяет делить столбиком натуральное число на конечную десятичную дробь.

Пример.

Разделите натуральное число 3 на десятичную дробь 5,4 .

Решение.

После переноса запятой на 1 цифру вправо, приходим к делению числа 30,0 на 54 . Выполним деление столбиком:
.

Это правило можно применять и при делении бесконечных десятичных дробей на 10, 100, … . К примеру, 3,(56):1 000=0,003(56) и 593,374…:100=5,93374… .

Деление десятичных дробей на 0,1, 0,01, 0,001 и т.д.

Так как 0,1=1/10 , 0,01=1/100 и т.д., то из правила деления на обыкновенную дробь следует, что разделить десятичную дробь на 0,1 , 0,01 , 0,001 и т.д. это все равно, что умножить данную десятичную дробь на 10 , 100 , 1 000 и т.д. соответственно.

Другими словами, чтобы разделить десятичную дробь на 0,1, 0,01, … нужно перенести запятую вправо на 1, 2, 3, … цифр, при этом если цифр в записи десятичной дроби недостаточно для переноса запятой, то справа нужно дописать необходимое количество нулей.

Например, 5,739:0,1=57,39 и 0,21:0,00001=21 000 .

Это же правило можно применять при делении бесконечных десятичных дробей на 0,1 , 0,01 , 0,001 и т.д. При этом следует быть очень внимательным с делением периодических дробей, чтобы не ошибиться с периодом дроби, которая получается в результате деления. К примеру, 7,5(716):0,01=757,(167) , так как после переноса запятой в записи десятичной дроби 7,5716716716… на два знака вправо, имеем запись 757,167167… . С бесконечными непериодическими десятичными дробями все проще: 394,38283…:0,001=394382,83… .

Деление обыкновенной дроби или смешанного числа на десятичную дробь и наоборот

Деление обыкновенной дроби или смешанного числа на конечную или периодическую десятичную дробь, а также деление конечной или периодической десятичной дроби на обыкновенную дробь или смешанное число сводится к делению обыкновенных дробей. Для этого десятичные дроби заменяются соответствующими обыкновенными дробями, а смешанное число представляется в виде неправильной дроби.

При делении бесконечной непериодической десятичной дроби на обыкновенную дробь или смешанное число и наоборот следует перейти к делению десятичных дробей, заменив обыкновенную дробь или смешанное число соответствующей десятичной дробью.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

I. Чтобы разделить десятичную дробь на натуральное число, нужно делить дробь на это число, как делят натуральные числа и поставить в частном запятую тогда, когда закончится деление целой части.

Примеры.

Выполнить деление : 1) 96,25: 5; 2) 4,78: 4; 3) 183,06: 45.

Решение.

Пример 1) 96,25: 5.

Делим «уголком» так, как делят натуральные числа. После того, как сносим цифру 2 (число десятых — первая цифра после запятой в записи делимого 96,2 5), в частном ставим запятую и продолжаем деление.

Ответ : 19,25.

Пример 2) 4,78: 4.

Делим так, как делят натуральные числа. В частном поставим запятую сразу, как снесем 7 — первую цифру после запятой в делимом 4,7 8. Продолжаем деление дальше. При вычитании 38-36 получаем 2, но деление не окончено. Как поступаем? Мы знаем, что в конце десятичной дроби можно приписывать нули — от этого значение дроби не изменится. Приписываем нуль и делим 20 на 4. Получаем 5 — деление окончено.

Ответ : 1,195.

Пример 3) 183,06: 45.

Делим как 18306 на 45. В частном поставим запятую как только снесем цифру 0 — первую цифру после запятой в делимом 183,0 6. Так же, как в примере 2) нам пришлось приписать нуль к числу 36 — разности чисел 306 и 270.

Ответ : 4,068.

Вывод : при делении десятичной дроби на натуральное число в частном ставим запятую сразу после того, как сносим цифру в разряде десятых делимого . Обратите внимание: все выделенные красным цветом цифры в этих трех примерах относятся к разряду десятых долей делимого.

II . Чтобы разделить десятичную дробь на 10, 100, 1000 и т. д. нужно перенести запятую влево на 1, 2, 3 и т. д. цифр.

Примеры.

Выполнить деление: 1) 41,56: 10; 2) 123,45: 100; 3) 0,47: 100; 4) 8,5: 1000; 5) 631,2: 10000.

Решение.

Перенос запятой влево зависит от того, сколько в делителе нулей после единицы. Так, при делении десятичной дроби на 10 мы будем переносить в делимом запятую влево на одну цифру ; при делении на 100 — перенесем запятую влево на две цифры ; при делении на 1000 перенесем в данной десятичной дроби запятую на три цифры влево.


Top