Сера. Сероводород. Сульфиды. Окислительные свойства серной кислоты

Кислород с амый распространённый элемент земной коры. Молекула кислорода двухатомна (O 2). Простое вещество – молекулярный кислород – представляет собой газ без цвета и запаха, плохо растворимый в воде. В атмосфере Земли содержится 21 % (по объёму) кислорода. В природных соединениях кислород встречается в виде оксидов (H 2 O, SiO 2) и солей оксокислот. Одно из важнейших природных соединений кислорода – вода, или оксид водорода H 2 O.

Помимо оксидов, кислород способен образовывать пероксиды – вещества, содержащие следующую группировку атомов: –O–O– . Один из важнейших пероксидов – пероксид водорода H 2 O 2 (H–O–O–H). В пероксидах атомы кислорода имеют промежуточную степень окисления минус 1, поэтому эти соединения могут быть как окислителями, так и восстановителями:

Из величин стандартных электродных потенциалов следует, что окисли

тельные свойства H2O2 наиболее сильно проявляются в кислой среде, а восстановительные – в щелочной. Например, пероксид водорода в кислой среде способен окислять те вещества, стандартный потенциал электрохимической системы которых не превышает +1,776 В, и восстанавливать только те, у которых потенциал больше +0,682 В.

Аллотропной модификацией кислорода является озон (O3) – газ со специфическим запахом. Озон получают действием «тихих» электрических разрядов на кислород в специальных приборах – озонаторах. Реакция превращения кислорода в озон требует затраты энергии:

3O2 ↔ 2O3 – 285 кДж.

Обратный процесс – распад озона – протекает самопроизвольно.

Озон – один из сильнейших окислителей; по окислительной активности он уступает только фтору.

При высокой температуре сера взаимодействует с водородом с образованием сероводорода (H2S) – бесцветного газа с характерным запахом гниющего белка. Поскольку эта реакция обратима, то на практике сероводород обычно получают действием разбавленных кислот на сульфиды металлов:

FeS + 2 HCl → H2S + FeCl2 .

Сероводород – сильный восстановитель; при поджигании на воздухе горит голубоватым пламенем:

2 H2S + 3 O2 → 2 SO2 + 2 H2O (в избытке кислорода).

Поэтому смесь сероводорода с воздухом взрывоопасна. При недостатке кислорода сероводород окисляется только до свободной серы:

2 H2S + O2 → 2 S + 2 H2O .

Сероводород очень ядовит и способен вызвать тяжёлые отравления.

Раствор сероводорода в воде обладает свойствами слабой двухосновной кислоты (К1 = 6×10–8, К2 = 1×10–14). Средние соли сероводородной кислоты – сульфиды – можно получить непосредственным взаимодействием металлов с серой. Малорастворимые сульфиды можно получить, действуя сероводородом на растворы солей соответствующих металлов:

CuSO4 + H2S CuS+ H2SO4 .

Оксид серы (IV) образуется при горении серы на воздухе:

S + O2 → SO2 .

В промышленности SO2 получают при обжиге сульфидов и полисульфидов металлов, а также термическим разложением сульфатов (в частности CaSO4):

Диоксид серы – бесцветный газ с запахом жжёной серы. SO2 хорошо растворяется в воде, образуя сернистую кислоту:

Сернистая кислота – слабая двухосновная кислота (К1=1,6×10–2, К2=6×10–8). H2SO3 и её соли являются хорошими восстановителями и окисляются до серной кислоты или сульфатов:

При высокой температуре в присутствии катализатора (V2O5, сплавы на основе платины) диоксид серы окисляется кислородом до триоксида:

Оксид серы (VI) – это ангидрид серной кислоты:

В газообразном состоянии оксид серы (VI) состоит из молекул SO3, построенных в форме правильного треугольника. При конденсации паров SO3 образуется летучая жидкость (t кипения = +44,8 °C), состоящая преимущественно из тримерных циклических молекул. При охлаждении до +16,8 °C она затвердевает, и образуется так называемая льдовидная модификация SO3 . При хранении она постепенно превращается в асбестовидную модификацию SO3, состоящую из полимерных молекул.

Концентрированная серная кислота, особенно горячая, – энергичный окислитель. Она окисляет бромид- и иодид-ионы до свободных галогенов, уголь – до углекислого газа, серу – до SO2. При взаимодействии с металлами концентрированная серная кислота переводит их в сульфаты, восстанавливаясь до SO2, S или H2S. Чем более активен металл, тем более глубоко восстанавливается кислота.

Например, при взаимодействии концентрированной серной кислоты с медью преимущественно выделяется SO2; при взаимодействии с цинком может наблюдаться одновременное выделение и оксида серы (IV), и свободной серы, и сероводорода:

H2SO4 – сильная двухосновная кислота, диссоциированная по первой стадии

практически нацело; диссоциация по второй стадии протекает в меньшей степени, однако в разбавленных водных растворах серная кислота диссоциирована практически нацело по схеме:

H2SO4 → 2 H + + SO4 2-

Большинство солей серной кислоты хорошо растворимо в воде. К практически нерастворимым относятся BaSO4 , SrSO4 , PbSO4; малорастворим CaSO4. Качественная реакция на ионы SO4 2– обусловлена образованием малорастворимых сульфатов. Например, при введении ионов бария в раствор, содержащий сульфатионы, выпадает белый осадок сульфата бария, практически нерастворимый в воде и разбавленных кислотах:

Ba 2+ + SO4 2- → BaSO4↓ .

Серную кислоту применяют в производстве минеральных удобрений;

как электролит в свинцовых аккумуляторах; для получения различных минеральных кислот и солей; в производстве химических волокон, красителей, дымообразующих и взрывчатых веществ; в нефтяной, металлообрабатывающей, текстильной, кожевенной и др. отраслях промышленности и т.д.

Сера – элемент 3‑го периода и VIA‑группы Периодической системы, порядковый номер 16, относится к халькогенам. Электронная формула атома [ 10 Ne]3s 2 3p 4 , характерные степени окисления 0, ‑II, +IV и +VI, состояние S VI считается устойчивым.

Шкала степеней окисления серы:

Электроотрицательность серы равна 2,60, для нее характерны неметаллические свойства. В водородных и кислородных соединениях находится в составе различных анионов, образует кислородсодержащие кислоты и их соли, бинарные соединения.

В природе – пятнадцатый по химической распространенности элемент (седьмой среди неметаллов). Встречается в свободном (самородном) и связанном виде. Жизненно важный элемент для высших организмов.

Сера S. Простое вещество. Желтая кристаллическая (α‑ромбическая и β‑моноклинная,

при 95,5 °C) или аморфная (пластическая). В узлах кристаллической решетки находятся молекулы S 8 (неплоские циклы типа «корона»), аморфная сера состоит из цепей S n . Низкоплавкое вещество, вязкость жидкости проходит через максимум при 200 °C (разрыв молекул S 8 , переплетение цепей S n). В паре – молекулы S 8 , S 6 , S 4 , S 2 . При 1500 °C появляется одноатомная сера (в химических уравнениях для простоты любая сера изображается как S).

Сера не растворяется в воде и при обычных условиях не реагирует с ней, хорошо растворима в сероуглероде CS 2 .

Сера, особенно порошкообразная, обладает высокой активностью при нагревании. Реагирует как окислитель с металлами и неметаллами:

а как восстановитель – с фтором, кислородом и кислотами (при кипячении):

Сера подвергается дисмутации в растворах щелочей:

3S 0 + 6КОН (конц.) = 2K 2 S ‑II + K 2 S IV O 3 + 3H 2 O

При высокой температуре (400 °C) сера вытесняет иод из иодоводорода:

S + 2НI (г) = I 2 + H 2 S,

но в растворе реакция идет в обратную сторону:

I 2 + H 2 S (p) = 2 HI + S↓

Получение : в промышленности выплавляется из природных залежей самородной серы (с помощью водяного пара), выделяется при десульфурации продуктов газификации угля.

Сера применяется для синтеза сероуглерода, серной кислоты, сернистых (кубовых) красителей, при вулканизации каучука, как средство защиты растений от мучнистой росы, для лечения кожных заболеваний.

Сероводород H 2 S. Бескислородная кислота. Бесцветный газ с удушающим запахом, тяжелее воздуха. Молекула имеет строение дважды незавершенного тетраэдра [::S(H) 2 ]

(sp 3 ‑гибридизация, валетный угол Н – S–Н далек от тетраэдрического). Неустойчив при нагревании выше 400 °C. Малорастворим в воде (2,6 л/1 л Н 2 O при 20 °C), насыщенный раствор децимолярный (0,1М, «сероводородная вода»). Очень слабая кислота в растворе, практически не диссоциирует по второй стадии до ионов S 2‑ (максимальная концентрация S 2‑ равна 1 10 ‑13 моль/л). При стоянии на воздухе раствор мутнеет (ингибитор – сахароза). Нейтрализуется щелочами, не полностью – гидратом аммиака. Сильный восстановитель. Вступает в реакции ионного обмена. Сульфидирующий агент, осаждает из раствора разноокрашенные сульфиды с очень малой растворимостью.

Качественные реакции – осаждение сульфидов, а также неполное сгорание H 2 S с образованием желтого налета серы на внесенном в пламя холодном предмете (фарфоровый шпатель). Побочный продукт очистки нефти, природного и коксового газа.

Применяется в производстве серы, неорганических и органических серосодержащих соединений как аналитический реагент. Чрезвычайно ядовит. Уравнения важнейших реакций:

Получение : в промышленности – прямым синтезом:

Н 2 + S = H 2 S (150–200 °C)

или при нагревании серы с парафином;

в лаборатории – вытеснением из сульфидов сильными кислотами

FeS + 2НCl (конц.) = FeCl 2 + H 2 S

или полным гидролизом бинарных соединений:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S

Сульфид натрия Na 2 S. Бескислородная соль. Белый, очень гигроскопичный. Плавится без разложения, термически устойчивый. Хорошо растворим в воде, гидролизуется по аниону, создает в растворе сильнощелочную среду. При стоянии на воздухе раствор мутнеет (коллоидная сера) и желтеет (окраска полисульфида). Типичный восстановитель. Присоединяет серу. Вступает в реакции ионного обмена.

Качественные реакции на ион S 2‑ – осаждение разноокрашенных сульфидов металлов, из которых MnS, FeS, ZnS разлагаются в НCl (разб.).

Применяется в производстве сернистых красителей и целлюлозы, для удаления волосяного покрова шкур при дублении кож, как реагент в аналитической химии.

Уравнения важнейших реакций:

Na 2 S + 2НCl (разб.) = 2NaCl + H 2 S

Na 2 S + 3H 2 SO 4 (конц.) = SO 2 + S↓ + 2H 2 O + 2NaHSO 4 (до 50 °C)

Na 2 S + 4HNO 3 (конц.) = 2NO + S↓ + 2H 2 O + 2NaNO 3 (60 °C)

Na 2 S + H 2 S (насыщ.) = 2NaHS

Na 2 S (т) + 2O 2 = Na 2 SO 4 (выше 400 °C)

Na 2 S + 4H 2 O 2 (конц.) = Na 2 SO 4 + 4H 2 O

S 2‑ + M 2+ = MnS (телесн.)↓; FeS (черн.)↓; ZnS (бел.)↓

S 2‑ + 2Ag + = Ag 2 S (черн.)↓

S 2‑ + M 2+ = СdS (желт.)↓; PbS, CuS, HgS (черные)↓

3S 2‑ + 2Bi 3+ = Bi 2 S 3 (кор. – черн.)↓

3S 2‑ + 6H 2 O + 2M 3+ = 3H 2 S + 2M(OH) 3 ↓ (M = Al, Cr)

Получение в промышленности – прокаливание минерала мирабилит Na 2 SO 4 10Н 2 O в присутствии восстановителей:

Na 2 SO 4 + 4Н 2 = Na 2 S + 4Н 2 O (500 °C, кат. Fe 2 O 3)

Na 2 SO 4 + 4С (кокс) = Na 2 S + 4СО (800–1000 °C)

Na 2 SO 4 + 4СО = Na 2 S + 4СO 2 (600–700 °C)

Сульфид алюминия Al 2 S 3 . Бескислородная соль. Белый, связь Al – S преимущественно ковалентная. Плавится без разложения под избыточным давлением N 2 , легко возгоняется. Окисляется на воздухе при прокаливании. Полностью гидролизуется водой, не осаждается из раствора. Разлагается сильными кислотами. Применяется как твердый источник чистого сероводорода. Уравнения важнейших реакций:

Al 2 S 3 + 6Н 2 O = 2Al(ОН) 3 ↓ + 3H 2 S (чистый)

Al 2 S 3 + 6НCl (разб.) = 2AlCl 3 + 3H 2 S

Al 2 S 3 + 24HNO 3 (конц.) = Al 2 (SO 4) 3 + 24NO 2 + 12H 2 O (100 °C)

2Al 2 S 3 + 9O 2 (воздух) = 2Al 2 O 3 + 6SO 2 (700–800 °C)

Получение : взаимодействие алюминия с расплавленной серой в отсутствие кислорода и влаги:

2Al + 3S = AL 2 S 3 (150–200 °C)

Сульфид железа (II) FeS. Бескислородная соль. Черно‑серый с зеленым оттенком, тугоплавкий, разлагается при нагревании в вакууме. Во влажном состоянии чувствителен к кислороду воздуха. Нерастворим в воде. Не выпадает в осадок при насыщении растворов солей железа(II) сероводородом. Разлагается кислотами. Применяется как сырье в производстве чугуна, твердый источник сероводорода.

Соединение железа(III) состава Fe 2 S 3 не известно (не получено).

Уравнения важнейших реакций:

Получение:

Fe + S = FeS (600 °C)

Fe 2 O 3 + H 2 + 2H 2 S = 9FeS + 3H 2 O (700‑1000 °C)

FeCl 2 + 2NH 4 HS (изб.) = FeS ↓ + 2NH 4 Cl + H 2 S

Дисульфид железа FeS 2 . Бинарное соединение. Имеет ионное строение Fe 2+ (–S – S–) 2‑ . Темно‑желтый, термически устойчивый, при прокаливании разлагается. Нерастворим в воде, не реагирует с разбавленными кислотами, щелочами. Разлагается кислотами‑окислителями, подвергается обжигу на воздухе. Применяется как сырье в производстве чугуна, серы и серной кислоты, катализатор в органическом синтезе. В природе – рудные минералы пирит и марказит.

Уравнения важнейших реакций:

FeS 2 = FeS + S (выше 1170 °C, вакуум)

2FeS 2 + 14H 2 SO 4 (конц., гор.) = Fe 2 (SO 4) 3 + 15SO 2 + 14Н 2 O

FeS 2 + 18HNO 3 (конц.) = Fe(NO 3) 3 + 2H 2 SO 4 + 15NO 2 + 7H 2 O

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

Гидросульфид аммония NH 4 HS. Бескислородная кислая соль. Белый, плавится под избыточным давлением. Весьма летучий, термически неустойчивый. На воздухе окисляется. Хорошо растворим в воде, гидролизуется по катиону и аниону (преобладает), создает щелочную среду. Раствор желтеет на воздухе. Разлагается кислотами, в насыщенном растворе присоединяет серу. Щелочами не нейтрализуется, средняя соль (NH 4) 2 S не существует в растворе (условия получения средней соли см. в рубрике «H 2 S»). Применяется в качестве компонента фотопроявителей, как аналитический реагент (осадитель сульфидов).

Уравнения важнейших реакций:

NH 4 HS = NH 3 + H 2 S (выше 20 °C)

NH 4 HS + НCl (разб.) = NH 4 Cl + H 2 S

NH 4 HS + 3HNO 3 (конц.) = S↓ + 2NO 2 + NH 4 NO 3 + 2H 2 O

2NH 4 HS (насыщ. H 2 S) + 2CuSO 4 = (NH 4) 2 SO 4 + H 2 SO 4 + 2CuS↓

Получение : насыщение концентрированного раствора NH 3 сероводородом:

NH 3 Н 2 O (конц.) + H 2 S (г) = NH 4 HS + Н 2 O

В аналитической химии раствор, содержащий равные количества NH 4 HS и NH 3 Н 2 O, условно считают раствором (NH 4) 2 S и используют формулу средней соли в записи уравнений реакций, хотя сульфид аммония полностью гидролизуется в воде до NH 4 HS и NH 3 Н 2 O.

Диоксид серы. Сульфиты

Диоксид серы SO 2 . Кислотный оксид. Бесцветный газ с резким запахом. Молекула имеет строение незавершенного треугольника [: S(O) 2 ] (sр 2 ‑гибридизация), содержит σ,π‑связи S=O. Легко сжижается, термически устойчивый. Хорошо растворим в воде (~40 л/1 л Н 2 O при 20 °C). Образует полигидрат, обладающий свойствами слабой кислоты, продукты диссоциации – ионы HSO 3 ‑ и SO 3 2‑ . Ион HSO 3 ‑ имеет две таутомерные формы – симметричную (некислотную) со строением тетраэдра (sр 3 ‑гибридизация), которая преобладает в смеси, и несимметричную (кислотную) со строением незавершенного тетраэдра [: S(O) 2 (OH)] (sр 3 ‑гибридизация). Ион SO 3 2‑ также тетраэдрический [: S(O) 3 ].

Реагирует со щелочами, гидратом аммиака. Типичный восстановитель, слабый окислитель.

Качественная реакция – обесцвечивание желто‑коричневой «йодной воды». Промежуточный продукт в производстве сульфитов и серной кислоты.

Применяется для отбеливания шерсти, шелка и соломы, консервирования и хранения фруктов, как дезинфицирующее средство, антиоксидант, хладагент. Ядовит.

Соединение состава H 2 SO 3 (сернистая кислота) не известно (не существует).

Уравнения важнейших реакций:

Растворение в воде и кислотные свойства:

Получение : в промышленности – сжигание серы в воздухе, обогащенном кислородом, и, в меньшей степени, обжиг сульфидных руд (SO 2 – попутный газ при обжиге пирита):

S + O 2 = SO 2 (280–360 °C)

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 (800 °C, обжиг)

в лаборатории – вытеснение серной кислотой из сульфитов:

BaSO 3(т) + H 2 SO 4 (конц.) = BaSO 4 ↓ + SO 2 + Н 2 O

Сульфит натрия Na 2 SO 3 . Оксосоль. Белый. При нагревании на воздухе разлагается без плавления, плавится под избыточным давлением аргона. Во влажном состоянии и в растворе чувствителен к кислороду воздуха. Хорошо растворим в воде, гидролизуется по аниону. Разлагается кислотами. Типичный восстановитель.

Качественная реакция на ион SO 3 2‑ – образование белого осадка сульфита бария, который переводится в раствор сильными кислотами (НCl, HNO 3).

Применяется как реактив в аналитической химии, компонент фотографических растворов, нейтрализатор хлора при отбеливании тканей.

Уравнения важнейших реакций:

Получение:

Na 2 CO 3 (конц.) + SO 2 = Na 2 SO 3 + CO 2

Серная кислота. Сульфаты

Серная кислота H 2 SO 4 . Оксокислота. Бесцветная жидкость, очень вязкая (маслообразная), весьма гигроскопичная. Молекула имеет искаженно‑тетраэдрическое строение (sр 3 ‑гибридизация), содержит ковалентные σ‑связи S – ОН и σπ‑связи S=O. Ион SO 4 2‑ имеет правильно‑тетраэдрическое строение . Обладает широким температурным интервалом жидкого состояния (~300 градусов). При нагревании выше 296 °C частично разлагается. Перегоняется в виде азеотропной смеси с водой (массовая доля кислоты 98,3 %, температура кипения 296–340 °C), при более сильном нагревании разлагается полностью. Неограниченно смешивается с водой (с сильным экзо ‑эффектом). Сильная кислота в растворе, нейтрализуется щелочами и гидратом аммиака. Переводит металлы в сульфаты (при избытке концентрированной кислоты в обычных условиях образуются растворимые гидросульфаты), но металлы Be, Bi, Со, Fe, Mg и Nb пассивируются в концентрированной кислоте и не реагируют с ней. Реагирует с основными оксидами и гидроксидами, разлагает соли слабых кислот. Слабый окислитель в разбавленном растворе (за счет Н I), сильный – в концентрированном растворе (за счет S VI). Хорошо растворяет SO 3 и реагирует с ним (образуется тяжелая маслообразная жидкость – олеум, содержит H 2 S 2 O 7).

Качественная реакция на ион SO 4 2‑ – осаждение белого сульфата бария BaSO 4 (осадок не переводится в раствор соляной и азотной кислотами, в отличие от белого осадка BaSO 3).

Применяется в производстве сульфатов и других соединений серы, минеральных удобрений, взрывчатых веществ, красителей и лекарственных препаратов, в органическом синтезе, для «вскрытия» (первого этапа переработки) промышленно важных руд и минералов, при очистке нефтепродуктов, электролизе воды, как электролит свинцовых аккумуляторов. Ядовита, вызывает ожоги кожи. Уравнения важнейших реакций:

Получение в промышленности :

а) синтез SO 2 из серы, сульфидных руд, сероводорода и сульфатных руд:

S + O 2 (воздух) = SO 2 (280–360 °C)

4FeS 2 + 11O 2 (воздух) = 8SO 2 + 2Fe 2 O 3 (800 °C, обжиг)

2H 2 S + 3O 2 (изб.) = 2SO 2 + 2Н 2 O (250–300 °C)

CaSO 4 + С (кокс) = СаО + SO 2 + СО (1300–1500 °C)

б) конверсия SO 2 в SO 3 в контактном аппарате:

в) синтез концентрированной и безводной серной кислоты:

Н 2 O (разб. H 2 SO 4) + SO 3 =H 2 SO 4 (конц., безводн.)

(поглощение SO 3 чистой водой с получением H 2 SO 4 не проводится из‑за сильного разогревания смеси и обратного разложения H 2 SO 4 , см. выше);

г) синтез олеума – смеси безводной H 2 SO 4 , дисерной кислоты H 2 S 2 O 7 и избыточного SO 3 . Растворенный SO 3 гарантирует безводность олеума (при попадании воды тут же образуется H 2 SO 4), что позволяет безопасно перевозить его в стальных цистернах.

Сульфат натрия Na 2 SO 4 . Оксосоль. Белый, гигроскопичный. Плавится и кипит без разложения. Образует кристаллогидрат (минерал мирабилит), легко теряющий воду; техническое название глауберова соль. Хорошо растворим в воде, не гидролизуется. Реагирует с H 2 SO 4 (конц.), SO 3 . Восстанавливается водородом, коксом при нагревании. Вступает в реакции ионного обмена.

Применяется в производстве стекла, целлюлозы и минеральных красок, как лекарственное средство. Содержится в рапе соляных озер, в частности в заливе Кара‑Богаз‑Гол Каспийского моря.

Уравнения важнейших реакций:

Гидросульфат калия KHSO 4 . Кислая оксосоль. Белый, гигроскопичный, но кристаллогидратов не образует. При нагревании плавится и разлагается. Хорошо растворим в воде, в растворе анион подвергается диссоциации, среда раствора сильнокислотная. Нейтрализуется щелочами.

Применяется как компонент флюсов в металлургии, составная часть минеральных удобрений.

Уравнения важнейших реакций:

2KHSO 4 = K 2 SO 4 + H 2 SO 4 (до 240 °C)

2KHSO 4 = K 2 S 2 O 7 + Н 2 O (320–340 °C)

KHSO 4 (разб.) + КОН (конц.) = K 2 SO 4 + Н 2 O KHSO 4 + КCl = K 2 SO 4 + НCl (450–700 °C)

6KHSO 4 + М 2 O 3 = 2KM(SO 4) 2 + 2K 2 SO 4 + 3H 2 O (350–500 °C, M = Al, Cr)

Получение : обработка сульфата калия концентрированной (более чем 6O%‑ной) серной кислотой на холоду:

K 2 SO 4 + H 2 SO 4 (конц.) = 2KHSO 4

Сульфат кальция CaSO 4 . Оксосоль. Белый, весьма гигроскопичный, тугоплавкий, при прокаливании разлагается. Природный CaSO 4 встречается в виде очень распространенного минерала гипс CaSO 4 2Н 2 O. При 130 °C гипс теряет часть воды и переходит в жжёный (штукатурный) гипс 2CaSO 4 Н 2 O (техническое название алебастр). Полностью обезвоженный (200 °C) гипс отвечает минералу ангидрит CaSO 4 . Малорастворим в воде (0,206 г/100 г Н 2 O при 20 °C), растворимость уменьшается при нагревании. Реагирует с H 2 SO 4 (конц.). Восстанавливается коксом при сплавлении. Определяет большую часть «постоянной» жесткости пресной воды (подробнее см. 9.2).

Уравнения важнейших реакций: 100–128 °C

Применяется как сырье в производстве SO 2 , H 2 SO 4 и (NH 4) 2 SO 4 , как флюс в металлургии, наполнитель бумаги. Приготовленный из жженого гипса вяжущий строительный раствор «схватывается» быстрее, чем смесь на основе Са(ОН) 2 . Затвердевание обеспечивается связыванием воды, образованием гипса в виде каменной массы. Используется жженый гипс для изготовления гипсовых слепков, архитектурно‑декоративных форм и изделий, перегородочных плит и панелей, каменных полов.

Сульфат алюминия‑калия KAl(SO 4) 2 . Двойная оксосоль. Белый, гигроскопичный. При сильном нагревании разлагается. Образует кристаллогидрат – алюжокалиевые квасцы. Умеренно растворим в воде, гидролизуется по катиону алюминия. Реагирует со щелочами, гидратом аммиака.

Применяется как протрава при крашении тканей, дубитель кож, коагулянт при очистке пресной воды, компонент составов для проклеивания бумаги, наружное кровоостанавливающее средство в медицине и косметологии. Образуется при совместной кристаллизации сульфатов алюминия и калия.

Уравнения важнейших реакций:

Сульфат хрома(III) – калия KCr(SO 4) 2 . Двойная оксосоль. Красный (гидрат темно‑фиолетовый, техническое название хрожокалиевые квасцы). При нагревании разлагается без плавления. Хорошо растворим в воде (серо‑синяя окраска раствора отвечает аквакомплексу 3+), гидролизуется по катиону хрома(III). Реагирует со щелочами, гидратом аммиака. Слабый окислитель и восстановитель. Вступает в реакции ионного обмена.

Качественные реакции на ион Cr 3+ – восстановление до Cr 2+ или окисление до желтого CrO 4 2‑ .

Применяется как дубитель кож, протрава при крашении тканей, реактив в фотографии. Образуется при совместной кристаллизации сульфатов хрома(III) и калия. Уравнения важнейших реакций:

Сульфат марганца (II) MnSO 4 . Оксосоль. Белый, при прокаливании плавится и разлагается. Кристаллогидрат MnSO 4 5Н 2 O – красно‑розовый, техническое название марганцевый купорос. Хорошо растворим в воде, светло‑розовая (почти бесцветная) окраска раствора отвечает аквакомплексу 2+ ; гидролизуется по катиону. Реагирует со щелочами, гидратом аммиака. Слабый восстановитель, реагирует с типичными (сильными) окислителями.

Качественные реакции на ион Mn 2+ – конмутация с ионом MnO 4 и исчезновение фиолетовой окраски последнего, окисление Mn 2+ до MnO 4 и появление фиолетовой окраски.

Применяется для получения Mn, MnO 2 и других соединений марганца, как микроудобрение и аналитический реагент.

Уравнения важнейших реакций:

Получение:

2MnO 2 + 2H 2 SO 4 (конц.) = 2MnSO 4 + O 2 + 2H 2 O (100 °C)

Сульфат железа (II) FeSO 4 . Оксосоль. Белый (гидрат светло‑зеленый, техническое название железный купорос), гигроскопичный. Разлагается при нагревании. Хорошо растворим в воде, в малой степени гидролизуется по катиону. Быстро окисляется в растворе кислородом воздуха (раствор желтеет и мутнеет). Реагирует с кислотами‑окислителями, щелочами, гидратом аммиака. Типичный восстановитель.

Применяется как компонент минеральных красок, электролитов в гальванотехнике, консервант древесины, фунгицид, лекарственное средство против анемии. В лаборатории чаще берется в виде двойной соли Fe(NH 4) 2 (SO 4) 2 6Н 2 O (соль Мора), более устойчивой к действию воздуха.

Уравнения важнейших реакций:

Получение:

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2

FeCO 3 + H 2 SO 4 (разб.) = FeSO 4 + CO 2 + H 2 O

7.4. Неметаллы VA‑группы

Азот. Аммиак

Азот – элемент 2‑го периода и VA‑группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0, ‑III, +III и +V, реже +II, +IV и др.; состояние N v считается относительно устойчивым.

Шкала степеней окисления азота:

Азот обладает высокой электроотрицательностью (3,07), третий после F и О. Проявляет типичные неметаллические (кислотные) свойства. Образует различные кислородсодержащие кислоты, соли и бинарные соединения, а также катион аммония NH 4 + и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

Азот N 2 . Простое вещество. Состоит из неполярных молекул с очень устойчивой σππ‑связью N ≡ N, этим объясняется химическая инертность азота при обычных условиях. Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха: 78,09 % по объему, 75,52 % по массе. Из жидкого воздуха азот выкипает раньше кислорода O 2 . Малорастворим в воде (15,4 мл/1 л Н 2 O при 20 °C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 реагирует только с литием (во влажной атмосфере), образуя нитрид лития Li 3 N, нитриды других элементов синтезируют при сильном нагревании:

N 2 + 3Mg = Mg 3 N 2 (800 °C)

В электрическом разряде N 2 реагирует с фтором и в очень малой степени – с кислородом:

Обратимая реакция получения аммиака протекает при 500 °C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe/F 2 O 3 /FeO, в лаборатории Pt):

В соответствии с принципом Ле‑Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450–500 °C, достигая 15 %‑ного выхода аммиака. Непрореагировавшие N 2 и Н 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2С (кокс) + O 2 = 2СО при нагревании. В этих случаях получают азот, содержащий также примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N ‑III H 4 N III O 2(т) = N 2 0 + 2H 2 O (60–70 °C)

NH 4 Cl (p) + KNO 2(p) = N 2 0 + KCl + 2H 2 O (100 °C)

Применяется для синтеза аммиака, азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

Аммиак NH 3 . Бинарное соединение, степень окисления азота равна – III. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3)] (sр 3 ‑гибридизация). Наличие у азота в молекуле NH 3 донорной пары электронов на sр 3 ‑гибридной орбитали обусловливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 + . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л Н 2 O при 20 °C); доля в насыщенном растворе равна = 34 % по массе и = 99 % по объему, рН = 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Crорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N ‑III) и окислительные (за счет Н I) свойства. Осушается только оксидом кальция.

Качественные реакции – образование белого «дыма» при контакте с газообразным НCl, почернение бумажки, смоченной раствором Hg 2 (NO 3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.

Уравнения важнейших реакций:

Получение : в лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью (NaOH + СаО):

или кипячение водного раствора аммиака с последующим осушением газа.

В промышленности аммиак синтезируют из азота (см.) с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода.

Гидрат аммиака NH 3 Н 2 O. Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и Н 2 O, связанные слабой водородной связью H 3 N… НОН. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 ‑ и анион ОН ‑). Катион аммония имеет правильно‑тетраэдрическое строение (sp 3 ‑гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N III) в концентрированном растворе. Вступает в реакции ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным НCl.

Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.

В 1М растворе аммиака содержится в основном гидрат NH 3 Н 2 O и лишь 0,4 % ионов NH 4 + и ОН ‑ (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате. Уравнения важнейших реакций:

NH 3 Н 2 O (конц.) = NH 3 + Н 2 O (кипячение с NaOH)

NH 3 Н 2 O + НCl (разб.) = NH 4 Cl + Н 2 O

3(NH 3 Н 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3NH 4 Cl

8(NH 3 Н 2 O) (конц.) + ЗBr 2(р) = N 2 + 6NH 4 Br + 8Н 2 O (40–50 °C)

2(NH 3 Н 2 O) (конц.) + 2КMnO 4 = N 2 + 2MnO 2 ↓ + 4Н 2 O + 2КОН

4(NH 3 Н 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O

4(NH 3 Н 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4Н 2 O

6(NH 3 Н 2 O) (конц.) + NiCl 2 = Cl 2 + 6Н 2 O

Разбавленный раствор аммиака (3–10 %‑ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5–25 %‑ный) – аммиачной водой (выпускается промышленностью).


Похожая информация.


Альмурзинова Завриш Бисембаевна , учитель биологии и химии МБОУ «Совхозная основная общеобразовательная школа Адамовского района Оренбургской области.

Предмет - химия, класс – 9.

УМК: «Неорганическая химия», авторы: Г.Е. Рудзитис, Ф.Г. Фельдман, Москва, «Просвещение», 2014 год.

Уровень обучения – базовый.

Тема : «Сероводород. Сульфиды. Сернистый газ. Сернистая кислота и её соли». Количество часов по теме – 1.

Урок № 4 в системе уроков по теме « Кислород и сера ».

Цель : На основании знаний о строении сероводорода, оксидов серы рассмотреть их свойства и получение, познакомить учащихся со способами распознавания сульфидов и сульфитов.

Задачи:

1. Образовательная – изучить особенности строения и свойства соединений серы (II ) и( IV ); ознакомиться с качественными реакциями на сульфид и сульфит - ионы.

2. Развивающая – развивать у учащихся умения проводить эксперимент, наблюдать за результатами, анализировать и делать выводы.

3. Воспитательная развитию интереса к изучаемому привить навыкы отношения к природе.

Планируемые результаты : уметь описывать физические и химические свойства сероводорода, сероводородной кислоты и её солей; знать способы получения сернистого газа и сернистой кислоты, объяснить свойства соединений серы (II ) и(IV ) на основе представлений об окислительно-восстановительных процессах; иметь представления о влиянии сернистого газа на появление кислотных дождей.

Оборудование : На демонстрационном столе: сера, сульфид натрия, сульфид железа, раствор лакмуса, раствор серной кислоты, раствор нитрата свинца, хлор в цилиндре, закрытом пробкой, прибор для получения сероводорода и испытания его свойств, оксид серы(VI ), газометр с кислородом, стакан вместимостью 500 мл., ложечка для сжигания веществ.

Ход урока :

    Организационный момент .

    Проводим беседу по повторению свойств серы:

1) чем объясняется наличие нескольких аллотропных видоизменений серы?

2) что происходит с молекулами: А) при охлаждении парообразной серы. Б) при длительном хранении пластической серы, в) при выпадении кристаллов из раствора серы в органических растворителях, например в толуоле?

3) на чем основан флотационный способ очистки серы от примесей, например от речного песка?

Вызываем двух учащихся: 1) изобразите схемы молекул различных аллотропных видоизменений серы и расскажите об их физических свойствах. 2) составьте уравнения реакций, характеризующих свойства кислорода, и рассмотрите их с точки зрения окисления -восстановления.

Остальные учащиеся решают задачу, какова масса сульфида цинка, образующегося при реакции соединения цинка с серой, взятой количеством вещества 2,5 моль?

    Совместно с учащимися формулируем задачу урока : познакомиться со свойствами соединений серы со степенью окисления -2 и +4.

    Новая тема : Учащиеся называют известные им соединения, в которых сера проявляет эти степени окисления. На доске и в тетрадях пишут химические, электронные и структурные формулы сероводорода, оксида серы (IV ), сернистой кислоты.

Как можно получить сероводород? Учащиеся записывают уравнение реакции соединения серы с водородом и объясняют её с точки зрения окисления-восстановления. Затем рассматривают другой способ получения сероводорода: реакцию обмена кислот с сульфидами металлов. Сравниваем этот способ со способами получения галогеноводородов. Отмечаем, что степень окисления серы в реакциях обмена не меняется.

Какими свойствами обладает сероводород? В беседе выясняем физические свойства, отмечаем физиологическое действие. Химические свойства выясняем на опыте горения сероводорода в воздухе при различных условиях. Что может образоваться в качестве продуктов реакции? Рассматриваем реакции с точки зрения окисления-восстановления:

2 Н 2 S + 3O 2 = 2H 2 O + 2SO 2

2H 2 S + O 2 =2H 2 O + 2S

Обращаем внимание учащихся на то, что при полном сгорании происходит более полное окисление (S -2 - 6 e - = S +4 ), чем во втором случае (S -2 - 2 e - = S 0 ).

Обсуждаем, как пройдет процесс, если в качестве окислителя будет взят хлор. Демонстрируем опыт смешивания газов в двух цилиндрах, верхний из которых заранее наполнен хлором, нижний - сероводородом. Хлор обесцвечивается, образуется хлороводород. Сера оседает на стенках цилиндра. После этого рассматриваем сущность реакции разложения сероводорода и подводим учащихся к выводу о кислотном характере сероводорода, подтверждая опытом с лакмусом. Затем проводим качественную реакцию на сульфид ион и составляем уравнение реакции:

Na 2 S +Pb(NO 3 ) 2 =2NaNO 3 +PbS ↓

Совместно с учащимися формулируем вывод: сероводород является только восстановителем в окислительно- восстановительных реакциях, имеет кислотный характер, раствор его в воде кислота.

S 0 →S -2 ; S -2 →S 0 ; S 0 →S +4 ; S -2 →S +4 ; S 0 →H 2 S -2 → S +4 О 2.

Подводим учащихся к выводу о существовании генетической связи между соединениями серы и начинаем разговор о соединениях S +4 . Демонстрируем опыты: 1) получение оксида серы(IV ), 2) обесцвечивание раствора фуксина, 3) растворение оксида серы(IV ) в воде, 4)обнаружение кислоты. Составляем уравнения реакций выполненных опытов и разбираем сущность реакций:

2S О 2 + О 2 =2 S О 3 ; S О 2 +2H 2 S=3S+2H 2 О .

Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы(IV ) и воду, поэтому существует только в водных растворах. Эта кислота средней силы. Она образует два ряда солей: средние - сульфиты(S О 3 -2 ), кислые – гидросульфиты(HS О 3 -1 ).

Демонстрируем опыт: качественное определение сульфитов, взаимодействие сульфитов с сильной кислотой, при этом выделяется газ S О 2 резким запахом:

К 2 S О 3 + Н 2 S О 4 → К 2 S О 4 + Н 2 О + S О 2

    Закрепление. Работа по двум вариантам составить схемы применения 1 вариант сероводорода, второй вариант оксида серы(IV )

    Рефлексия . Подводим итоги работы:

О каких соединениях мы сегодня говорили?

Какие свойства проявляют соединения серы(II ) и ( IV ).

Назовите области применения этих соединений

VII . Домашнее задание: §11,12, упр.3-5 (с.34)

Сероводород (H₂S) представляет собой бесцветный газ c запахом тухлых яиц. По плотности он тяжелее водорода. Сероводород смертельно ядовит для человека и животных. Даже незначительное его содержание в воздухе вызывает головокружение и тошноту, но самым страшным является то, что при длительном его вдыхании этот запах уже не ощущается. Однако при отравлении сероводородом существует простое противоядие: следует завернуть в платок кусок хлорной извести, затем смочить, и какое-то время нюхать этот сверток. Сероводород получают путем взаимодействия серы с водородом при температуре 350 °С:

H₂ + S → H₂S

Это окислительно-восстановительная реакция: в ходе нее изменяются степени окисления участвующих в ней элементов.

В лабораторных условиях сероводород получают воздействием на сульфид железа серной или соляной кислоты:

FeS + 2HCl → Fe­Cl₂ + H₂S

Это реакция обмена: в ней взаимодействующие вещества обмениваются своими ионами. Данный процесс обычно проводят с помощью аппарата Киппа.


Аппарат Киппа

Свойства сероводорода

При горении сероводорода образуется оксид серы 4 и водяной пар:

2H₂S + 3О₂ → 2Н₂О + 2SO₂

H₂S горит голубоватым пламенем, а если над ним подержать перевернутый химический стакан, то на его стенках появится прозрачный конденсат (вода).

Однако при незначительном понижении температуры данная реакция проходит несколько иначе: на стенках предварительно охлажденного стакана появится уже желтоватый налет свободной серы:

2H₂S + О₂ → 2Н₂О + 2S

На этой реакции основан промышленный способ получения серы.

При поджигании предварительно подготовленной газообразной смеси сероводорода и кислорода происходит взрыв.

Реакция сероводорода и оксида серы(IV) также позволяет получить свободную серу:

2H₂S + SО₂ → 2Н₂О + 3S

Сероводород растворим в воде, причем три объема этого газа могут раствориться в одном объеме воды, образуя слабую и нестойкую сероводородную кислоту (Н₂S). Эту кислоту также называют сероводородной водой. Как видите, формулы газа-сероводорода и сероводородной кислоты записываются одинаково.

Если к сероводородной кислоте прилить раствор соли свинца, выпадет черный осадок сульфида свинца:

H₂S + Pb(NO₃)₂ → PbS + 2H­NO₃

Это качественная реакция для обнаружения сероводорода. Она же демонстрирует способность сероводородной кислоты вступать в реакции обмена с растворами солей. Таким образом, любая растворимая соль свинца является реактивом на сероводород. Некоторые другие сульфиды металлов также имеют характерную окраску, например: сульфид цинка ZnS - белую, сульфид кадмия CdS - желтую, сульфид меди CuS - черную, сульфид сурьмы Sb₂S₃ - красную.

Кстати, сероводород является нестойким газом и при нагревании практически полностью разлагается на водород и свободную серу:

H₂S → Н₂ + S

Сероводород интенсивно взаимодействует с водными растворами галогенов:

H₂S + 4Cl₂ + 4H₂O→ H₂­SO₄ + 8HCl

Сероводород в природе и жизнедеятельности человека

Сероводород входит в состав вулканических газов, природного газа и газов, сопутствующих месторождениям нефти. Много его и в природных минеральных водах, например, в Черном море он залегает на глубине от 150 метров и ниже.

Сероводород применяют :

  • в медицине (лечение сероводородными ваннами и минеральными водами);
  • в промышленности (получение серы, серной кислоты и сульфидов);
  • в аналитической химии (для осаждения сульфидов тяжелых металлов, которые обычно нерастворимы);
  • в органическом синтезе (для получения сернистых аналогов органических спиртов (меркаптанов) и тиофена (серосодержащего ароматического углеводорода). Еще одно из недавно появившихся направлений в науке - сероводородная энергетика. Всерьез изучается получение энергии из залежей сероводорода со дна Черного моря.

Природа окислительно-восстановительных реакций серы и водорода

Реакция образования сероводорода является окислительно-восстановительной:

Н₂⁰ + S⁰→ H₂⁺S²⁻

Процесс взаимодействия серы с водородом легко объясняется строением их атомов. Водород занимает первое место в периодической системе, следовательно, заряд его атомного ядра равен (+1), а вокруг ядра атома кружится 1 электрон. Водород с легкостью отдает свой электрон атомам других элементов, превращаясь в положительно заряженный ион водорода - протон:

Н⁰ -1е⁻= Н⁺

Сера находится на шестнадцатой позиции в таблице Менделеева. Значит, заряд ядра ее атома равен (+16), и количество электронов в каждом атоме также 16е⁻. Расположение серы в третьем периоде говорит о том, что ее шестнадцать электронов кружатся вокруг атомного ядра, образуя 3 слоя, на последнем из которых находится 6 валентных электронов. Количество валентных электронов серы соответствует номеру группы VI, в которой она находится в периодической системе.

Итак, сера может отдать все шесть валентных электронов, как в случае образования оксида серы(VI):

2S⁰ + 3O2⁰ → 2S⁺⁶O₃⁻²

Кроме того, в результате окисления серы, 4е⁻могут быть отданы ее атомом другому элементу с образованием оксида серы(IV):

S⁰ + О2⁰ → S⁺4 O2⁻²

Сера может отдать также два электрона c образованием хлорида серы(II) :

S⁰ + Cl2⁰ → S⁺² Cl2⁻

Во всех трех вышеуказанных реакциях сера отдает электроны. Следовательно, она окисляется, но при этом выступает в роли восстановителя для атомов кислорода О и хлора Cl. Однако в случае образования H2S окисление - удел атомов водорода, поскольку именно они теряют электроны, восстанавливая внешний энергетический уровень серы с шести электронов до восьми. В результате этого каждый атом водорода в его молекуле становится протоном:

Н2⁰-2е⁻ → 2Н⁺,

а молекула серы, наоборот, восстанавливаясь, превращается в отрицательно заряженный анион (S⁻²): S⁰ + 2е⁻ → S⁻²

Таким образом, в химической реакции образования сероводорода окислителем выступает именно сера.

С точки зрения проявления серой различных степеней окисления, интересно и еще одно взаимодействие оксида серы(IV) и сероводорода - реакция получения свободной серы:

2H₂⁺S-²+ S⁺⁴О₂-²→ 2H₂⁺O-²+ 3S⁰

Как видно из уравнения реакции, и окислителем, и восстановителем в ней являются ионы серы. Два аниона серы (2-) отдают по два своих электрона атому серы в молекуле оксида серы(II), в результате чего все три атома серы восстанавливаются до свободной серы.

2S-² - 4е⁻→ 2S⁰ - восстановитель, окисляется;

S⁺⁴ + 4е⁻→ S⁰ - окислитель, восстанавливается.

Цели урока: рассмотреть свойства соединений серы – сероводорода, сероводородной кислоты и ее солей; сернистой кислоты и ее солей.

Оборудование: образцы сульфидов, сульфитов металлов, компьютерная презентация.

Ход урока

I. Подготовка к уроку

(Проверить готовность к уроку групп учащихся, оборудования, класса; отметить в классном журнале отсутствующих учащихся; сообщить тему и цели урока) .

II. Проверка знаний учащихся.

1. Решить задачу “Слайд № 1-1”:

Самородная сера, содержащая 30% примесей, была использована для получения оксида серы (IV) массой 8 г. Определите массу (в граммах) самородной серы.

Ответ: m(S) = 5,7 г.

2. Устные вопросы:

  • Расскажите о строении атома серы и степени окисления её.
  • Охарактеризуйте аллотропию серы.
  • Раскройте химические свойства серы.

3. Запишите уравнение химической реакции с точки зрения электролитической диссоциации между сульфатом цинка и гидроксидом калия “Слайд № 1-1”.

4. Проверка письменного домашнего задания – 6 учащихся.

5. Блок вопросов “Слайд № 2”:

  • Прочитайте формулировку Периодического закона, данную Д.И. Менделеевым (свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов).
  • Прочитайте современную формулировку Периодического закона (свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер).
  • Что называют химическим элементом? (химический элемент – это атомы одного вида)
  • В каких формах существует химический элемент? (химический элемент существует в трех формах: свободные атомы, простые вещества, сложные вещества).
  • Какие вещества называют простыми? (простыми называют вещества, молекула которых образована атомами одного химического элемента).
  • Какие вещества называют сложными? (сложными называют вещества, молекула которых образована атомами разных химических элементов).
  • На какие классы делятся сложные вещества? (сложные вещества делятся на четыре класса: оксиды, основания, кислоты, соли).
  • Какие вещества называют солями? (соли – это сложные вещества, молекула которых состоит из атомов металла и кислотных остатков).
  • Какие вещества называют кислотами? (кислоты – это сложные вещества, молекула которых состоит из атомов водорода и кислотного остатка).

III. Изучение нового материала.

План изучения нового материала “Слайд № 3”.

  1. Сероводород и сульфиды.
  2. Сернистая кислота и её соли.

1. Сероводород и сульфиды.

Сегодня мы как раз и познакомимся с некоторыми кислотами, которые образует сера. На прошлом уроке было отмечено, что при взаимодействии водорода и серы получается сероводород. Точно также проходит реакция водорода со всеми халькогенами. (H 2 O – H 2 S – H 2 Se – H 2 Te) “Слайд № 4-1”. Из них только вода представляет собой жидкость, остальные – газы, растворы которых будут проявлять кислотные свойства. Подобно галогеноводородам, прочность молекул халькогеноводородов уменьшается, а сила кислот, наоборот, возрастает “Слайд № 4-2”.

Сероводород – бесцветный газ с резким запахом. Он очень ядовит. Является сильнейшим восстановителем. Как восстановитель он активно взаимодействует с растворами галогенов “Слайд № 5-1”:

H 2 + S -2 + I 2 0 = S 0 + 2H + I -

Сероводород горит “Слайд № 5-2”:

2H 2 S + O 2 = 2H 2 O + 2S(при охлаждении пламени).

2H 2 S + 3O 2 = 2H 2 O + 2SO 2

При растворении сероводорода в воде образуется слабая сероводородная кислота [Демонстрация действия на кислоту индикаторов].

Сульфиды щелочных и щелочноземельных металлов, а также сульфид аммония хорошо растворимы и окрашены в различные цвета.

Задание. Проклассифицируйте сероводородную кислоту (сероводородная – это бескислородная, двухосновная кислота).

Таким образом, диссоциация сероводородной кислоты происходит ступенчато “Слайд № 5-3”:

H 2 S <–> H + + HS - (первая ступень диссоциации)

HS - <–> H + + S 2- (вторая ступень диссоциации),

значит, сероводородная кислота образует два вида солей:

гидросульфиды – соли, в которых металлом замещен только один атом водорода (NaHS)

сульфиды – соли, в которых металлом замещены оба атома водорода (Na 2 S).

2. Сернистая кислота и её соли .

Рассмотрим еще одну кислоту, которую образует сера. Мы уже выяснили, что при горении сероводорода образуется оксид серы (IV). Это бесцветный газ с характерным запахом. Он проявляет типичные свойства кислотных оксидов и хорошо растворяется в воде, образуя слабую сернистую кислоту [Демонстрация действия на кислоту индикаторов]. Она не устойчива и разлагается на исходные вещества “Слайд № 6-1”:

H 2 O + SO 2 <–> H 2 SO 3

Оксид серы (IV) можно получить разными способами “Слайд № 6-2:

а) горение серы;
б) горение сероводорода;
в) общих сульфидов.

Оксид серы (IV) и сернистая кислота являются типичными восстановителями и одновременно слабыми окислителями “Слайд № 7-1”. [Демонстрация действия кислоты на цветную ткань].

Таблица 1. “Слайд № 7-2”

Степени окисления серы в соединениях.

Вывод “Слайд № 8”. Только восстановительные свойства проявляют элементы, находящиеся в низшей степени окисления .

Только окислительные свойства проявляют элементы, находящиеся в высшей степени окисления .

Как восстановительные, так и окислительные свойства проявляют элементы, имеющие промежуточную степень окисления .

Задание. Проклассифицируйте сернистую кислоту (сернистая – это бескислородная, двухосновная кислота).

Значит, сернистая кислота образует два вида солей:

гидросульфиты – соли, в которых металлом замещен только один атом водорода (NaHSО 3)

сульфиты – соли, в которых металлом замещены оба атома водорода (Na 2 SО 3).

IV. Задание на дом

“Слайд № 9”: § 23 (с.134-140) упр. 1, 2, 5.

“Слайд № 10”.

Литература

  1. Габриелян О.С. Химия. 9 класс: учебн. для общеобразоват. учреждений / О.С. Габриелян. – 14-е изд., испр. – М. : Дрофа, 2008. – 270, с. : ил.
  2. Габриелян О.С. Настольная книга учителя. Химия. 9класс / О.С. Габриелян, И.Г. Остроумов. – М.: Дрофа, 2002. – 400 с.
  3. Глинка Н.Л. Общая химия: Учебное пособие для вузов / Под ред. А.И. Ермакова. – изд. 30-е, исправленное – М.: Интеграл-Пресс, 2008. – 728 с.
  4. Горковенко М.Ю. Химия. 9 класс. Поурочные разработки к учебникам О.С. Габриеляна (М.: Дрофа); Л.С. Гузея и др. (М.: Дрофа); Г.Е. Рудзитиса, Ф.Г Фельдмана (М.: Просвещение). – М.: “ВАКО”, 2004, 368 с. – (В помощь школьному учителю).
  5. Химия. – 2-е изд., перераб. / ред. коллегия: М. Аксёноыв, И. Леенсон, С. Мартынова и др. – М.: Мир энциклопедий Аванта+, Астрель, 2007. – 656 с.: ил. (Энциклопедия для детей).

Top