Электрохимический потенциал металлов. Ряд стандартных электродных потенциалов


Ряд стандартных электродных потенциалов количественно характеризует восстановительную способность атомов металлов и окислительную способность их ионов.  

Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения изобарного потенциала реакции. Но это означает, что первая из этих систем будет выступать в качестве восстанови теля, а вторая - в качестве окислителя. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.  

Ряд стандартных электродных потенциалов позволяет решать вопрос о направлении самопроизвольного протекания окислительно-восстановительных реакций. Как и в общем случае любой химической реакции, определяющим фактором служит здесь знак изменения энергии Гиббса реакции. Но это означает, что первая из этих систем будет выступать в качестве восстановителя, а вторая - в качестве окислителя. При непосредственном взаимодействии веществ возможное направление реакции будет, конечно, таким же, как и при ее осуществлении в гальваническом элементе.  

Ряд стандартных электродных потенциалов характеризует х и-мические свойства металлов.  

Стандартный водородный электрод.| Гальваническая цепь для измерения стандартного электродного потенциала металла.  

Ряд стандартных электродных потенциалов характеризует химические свойства металлов. Он используется при рассмотрении последовательности разряда ионов при электролизе, а также при описании общих свойств металлов.  

Ряд стандартных электродных потенциалов позволяет решат вопрос о направлении самопроизвольного протекания окислителi нэ-восстановительных реакций. Как и в общем случае любо химической реакции, определяющим фактором служит здесь зна изменения изобарного потенциала реакции. Но это означает что первая из этих систем будет выступать в качестве восстанови теля, а вторая - в качестве окислителя. При непосредственном взаимодействии веществ возмож ное направление реакции будет, конечно, таким же, как и при е осуществлении в гальваническом элементе.  

Ряд стандартных электродных потенциалов характеризует химические свойства металлов. Он используется для определения последовательности разряда ионов при электролизе, а также для описания общих свойств металлов. При этом величины стандартных электродных потенциалов количественно характеризуют восстановительную способность металлов и окислительную способность их ионов.  

Какую информацию можно получить из ряда напряжений?

Ряд напряжений металлов широко используется в неорганической химии. В частности, результаты многих реакций и даже возможность их осуществления зависят от положения некоторого металла в ЭРН. Обсудим этот вопрос подробнее.

Взаимодействие металлов с кислотами

Металлы, находящиеся в ряду напряжений левее водорода, реагируют с кислотами - неокислителями. Металлы, расположенные в ЭРН правее Н, взаимодействуют только с кислотами - окислителями (в частности, с HNO 3 и концентрированной H 2 SO 4).

Пример 1 . Цинк расположен в ЭРН левее водорода, следовательно, способен реагировать практически со всеми кислотами:

Zn + 2HCl = ZnCl 2 + H 2

Zn + H 2 SO 4 = ZnSO 4 + H 2

Пример 2 . Медь находится в ЭРН правее Н; данный металл не реагирует с "обычными" кислотами (HCl, H 3 PO 4 , HBr, органические кислоты), однако вступает во взаимодействие с кислотами-окислителями (азотная, концентрированная серная):

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

Cu + 2H 2 SO 4 (конц.) = CuSO 4 + SO 2 + 2H 2 O

Обращаю внимание на важный момент: при взаимодействии металлов с кислотами-окислителями выделяется не водород, а некоторые другие соединения. Подробнее об этом можно почитать !

Взаимодействие металлов с водой

Металлы, расположенные в ряду напряжений левее Mg, легко реагируют с водой уже при комнатной температуре с выделением водорода и образованием раствора щелочи.

Пример 3 . Натрий, калий, кальций легко растворяются в воде с образованием раствора щелочи:

2Na + 2H 2 O = 2NaOH + H 2

2K + 2H 2 O = 2KOH + H 2

Ca + 2H 2 O = Ca(OH) 2 + H 2

Металлы, расположенные в ряду напряжений от водорода до магния (включительно), в ряде случаев взаимодействуют с водой, но реакции требуют специфических условий. Например, алюминий и магний начинают взаимодействие с Н 2 О только после удаления оксидной пленки с поверхности металла. Железо не реагирует с водой при комнатной температуре, но взаимодействует с парами воды. Кобальт, никель, олово, свинец практически не взаимодействуют с H 2 O не только при комнатной температуре, но и при нагревании.

Металлы, расположенные в правой части ЭРН (серебро, золото, платина) не реагируют с водой ни при каких условиях.

Взаимодействие металлов с водными растворами солей

Речь пойдет о реакциях следующего типа:

металл (*) + соль металла (**) = металл (**) + соль металла (*)

Хотелось бы подчеркнуть, что звездочки обозначают в данном случае не степень окисления, не валентность металла, а просто позволяют различить металл № 1 и металл № 2.

Для осуществления подобной реакции необходимо одновременное выполнение трех условий:

  1. соли, участвующие в процессе, должны растворяться в воде (это легко проверить, пользуясь таблицей растворимости);
  2. металл (*) должен находиться в ряду напряжений левее металла (**);
  3. металл (*) не должен реагировать с водой (что тоже легко проверяется по ЭРН).

Пример 4 . Рассмотрим несколько реакций:

Zn + CuSO 4 = ZnSO 4 + Cu

K + Ni(NO 3) 2 ≠

Первая реакция легко осуществима, все перечисленные выше условия выполнены: сульфат меди растворим в воде, цинк находится в ЭРН левее меди, Zn не реагирует с водой.

Вторая реакция невозможна, т. к. не выполнено первое условие (сульфид меди (II) практически не растворяется в воде). Третья реакция неосуществима, поскольку свинец - менее активный металл, нежели железо (находится правее в ЭРН). Наконец, четвертый процесс НЕ приведет к осаждению никеля, поскольку калий реагирует с водой; образовавшийся гидроксид калия может вступить в реакцию с раствором соли, но это уже совершенно другой процесс.

Процесс термического распада нитратов

Напомню, что нитраты - это соли азотной кислоты. Все нитраты разлагаются при нагревании, но вот состав продуктов разложения может быть разным. Состав определяется положением металла в ряду напряжений.

Нитраты металлов, расположенных в ЭРН левее магния, при нагревании образуют соответствующий нитрит и кислород:

2KNO 3 = 2KNO 2 + O 2

В ходе термического разложения нитратов металлов, расположенных в ряду напряжений от Mg до Cu включительно, образуются оксид металла, NO 2 и кислород:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Наконец, при разложении нитратов наименее активных металлов (расположенных в ЭРН правее меди) образуются металл, диоксид азота и кислород.

Электрохимия - раздел химии, которая изучает процессы возникновения разности потенциалов и превращение химической энергии в электрическую (гальванические элементы), а также осуществление химических реакций за счет затраты электрической энергии (электролиз). Эти два процесса, имеющие общую природу нашли широкое применение в современной технике.

Гальванические элементы используются как автономные и малогабаритные источники энергии для машин, радиотехнических устройств и приборов управления. При помощи электролиза получают различные вещества, обрабатывают поверхности, создают изделия нужной формы.

Электрохимические процессы не всегда служат на пользу человеку, а иногда приносят большой вред, вызывая усиленную коррозию и разрушение металлических конструкций. Чтобы умело использовать электрохимические процессы и бороться с нежелательными явлениями, их надо изучить и уметь регулировать.

Причиной возникновения электрохимических явлений служит переход электронов или изменение степени окисления атомов веществ, участвующих в электрохимических процессах, то есть окислительно-восстановительные реакции, протекающие в гетерогенных системах. В окислительно-восстановительных реакциях электроны непосредственно переходят от восстановителя к окислителю. Если процессы окисления и восстановления пространственно разделить, а электроны направить по металлическому проводнику, то такая система будет представлять собой гальванический элемент. Причиной возникновения и протекания электрического тока в гальваническом элементе является разность потенциалов.

Электродный потенциал. Измерение электродных потенциалов

Если взять пластину какого либо металла и опустить ее в воду, то ионы поверхностного слоя под действием полярных молекул воды отрываются и гидратированными переходят в жидкость. В результате такого перехода жидкость заряжается положительно, а металл отрицательно, поскольку на нем появляется избыток электронов. Накопление ионов металла в жидкости начинает тормозить растворение металла. Устанавливается подвижное равновесие

Ме 0 + mН 2 О = Ме n + × m H 2 O + ne -

Состояние равновесия зависит как от активности металла так и от концентрации его ионов в растворе. В случае активных металлов, стоящих в ряду напряжений до водорода, взаимодействие с полярными молекулами воды заканчивается отрывом от поверхности положительных ионов металла и переходом гидратировнных ионов в раствор (рис. б). Металл заряжается отрицательно. Процесс является окислением. По мере увеличения концентрации ионов у поверхности становится вероятным обратный процесс - восстановление ионов. Электростатическое притяжение между катионами в растворе и избыточными электронами на поверхности образует двойной электрический слой. Это приводит к возникновению на границе соприкосновения металла и жидкости определенной разности потенциалов, или скачка потенциала. Разность потенциалов, возникающую между металлом и окружающей его водной средой, называют электродным потенциалом. При погружении металла в раствор соли этого металла равновесие смещается. Повышение концентрации ионов данного металла в растворе облегчает процесс перехода ионов из раствора в металл. Металлы, ионы которых обладают значительной способностью к переходу в раствор, будут заряжаться и в таком растворе положительно, но в меньшей степени, чем в чистой воде.

Для неактивных металлов равновесная концентрация ионов металла в растворе очень мала. Если такой металл погрузить в раствор соли этого металла, то положительно заряженные ионы выделяются на металле с большей скоростью, чем происходит переход ионов из металла в раствор. Поверхность металла получит положительный заряд, а раствор отрицательный из-за избытка анионов соли. И в этом случае на границе металл - раствор возникает двойной электрический слой, следовательно, определенная разность потенциалов (рис. в). В рассмотренном случае электродный потенциал положительный.

Рис. Процесс перехода иона из металла в раствор:

а – равновесие; б – растворение; в – осаждение

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Если металл опустить в раствор его соли, содержащей один моль-ион металла на 1 дм 3 (активность которого равна 1), то электродный потенциал будет постоянной величиной при температуре 25 о С и давлении 1 атм. Такой потенциал называется стандартным электродным потенциалом (Е о).

Ионы металла, имеющие положительный заряд, проникая в раствор и перемещаясь в поле потенциала границы раздела металл-раствор, затрачивают энергию. Эта энергия компенсируется работой изотермического расширения от большей концентрации ионов на поверхности к меньшей в растворе. Положительные ионы накапливаются в приповерхностном слое до концентрации с о , а затем уходят в раствор, где концентрация свободных ионов с . Работа электрического поля ЕnF равна изотермической работе расширения RTln(с o /с). Приравняв оба выражения работы можно вывести величину потенциала

Еn F = RTln(с o /с), -Е = RTln(с/с о)/nF,

где Е – потенциал металла, В; R – универсальная газовая постоянная, Дж/моль К; Т – температура, K; n – заряд иона; F – число Фарадея; с – концентрация свободных ионов;

с о – концентрация ионов в поверхностном слое.

Непосредственно измерить величину потенциала не представляется возможным, так как невозможно экспериментально определить с о. Опытным путем определяют величины электродных потенциалов относительно величины другого электрода, потенциал которого условно принимают равным нулю. Таким стандартным электродом или электродом сравнения является нормальный водородный электрод (н.в.э.) . Устройство водородного электрода показано на рисунке. Он состоит из платиновой пластинки, покрытой электролитически осаждённой платиной. Электрод погружен в 1М раствор серной кислоты (активность ионов водорода равна 1 моль/дм 3) и омывается струей газообразного водорода под давлением 101 кПа и Т = 298 К. При насыщении платины водородом на поверхности металла устанавливается равновесие, суммарный процесс выражается уравнением

2Н + +2е ↔ Н 2 .

Если пластинку металла, погруженного в 1М раствор соли этого металла, соединить внешним проводником со стандартным водородным электродом, а растворы электролитическим ключом, то получим гальванический элемент (рис. 32). Электродвижущая сила этого гальванического элемента будет являться величиной стандартного электродного потенциала данного металла (Е о ).

Схема измерения стандартного электродного потенциала

относительно водородного электрода

Взяв в качестве электрода цинк находящийся в 1 М растворе сульфата цинка и соединив его с водородным электродом, получим гальванический элемент, схему которого запишем следующим образом

(-) Zn/Zn 2+ // 2H + /H 2 , Pt (+).

В схеме одна черта означает границу раздела между электродом и раствором, две черты – границу между растворами. Анод записывается слева, катод справа. В таком элементе осуществляется реакция Zn о + 2H + = Zn 2+ + Н 2 , а электроны по внешней цепи переходят от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода (-0,76 В).

Взяв в качестве электрода медную пластинку, при указанных условиях в сочетании со стандартным водородным электродом, получим гальванический элемент

(-) Pt, H 2 /2H + //Cu 2+ /Cu (+).

В этом случае протекает реакция: Cu 2+ + H 2 = Cu о + 2H + . Электроны по внешней цепи перемещаются от водородного электрода к медному электроду. Стандартный электродный потенциал медного электрода (+0,34 В).

Li, K, Ca, Na, Mg, Al, Zn, Cr, Fe, Pb, H 2 , Cu, Ag, Hg, Au

Чем левее стоит металл в ряду стандартных электродных потенциалов, тем более сильным восстановителем он является, самый сильный восстановитель – металлический литий, золото – самый слабый, и, наоборот, ион золото (III) – самый сильный окислитель, литий (I) – самый слабый.

Каждый металл способен восстанавливать из солей в растворе те металлы, которые стоят в ряду напряжений после него, например, железо может вытеснять медь из растворов ее солей. Однако следует помнить, что металлы щелочных и щелочно-земельных металлов будут взаимодействовать непосредственно с водой.

Металлы, стоящее в ряду напряжений левее водорода, способны вытеснять его из растворов разбавленных кислот, при этом растворяться в них.

Восстановительная активность металла не всегда соответствует его положению в периодической системе, потому что при определении места металла в ряду учитывается не только его способность отдавать электроны, но и энергия, которая затрачивается на разрушение кристаллической решетки металла, а также энергия, затрачиваемая на гидратацию ионов.

Взаимодействие с простыми веществами

    С кислородом большинство металлов образует оксиды – амфотерные и основные:

4Li + O 2 = 2Li 2 O,

4Al + 3O 2 = 2Al 2 O 3 .

Щелочные металлы, за исключением лития, образуют пероксиды:

2Na + O 2 = Na 2 O 2 .

    С галогенами металлы образуют соли галогеноводородных кислот, например,

Cu + Cl 2 = CuCl 2 .

    С водородом самые активные металлы образуют ионные гидриды – солеподобные вещества, в которых водород имеет степень окисления -1.

2Na + H 2 = 2NaH.

    С серой металлы образуют сульфиды – соли сероводородной кислоты:

    С азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании:

3Mg + N 2 = Mg 3 N 2 .

    С углеродом образуются карбиды:

4Al + 3C = Al 3 C 4 .

    С фосфором – фосфиды:

3Ca + 2P = Ca 3 P 2 .

    Металлы могут взаимодействовать между собой, образуя интерметаллические соединения :

2Na + Sb = Na 2 Sb,

3Cu + Au = Cu 3 Au.

    Металлы могут растворяться друг в друге при высокой температуре без взаимодействия, образуя сплавы .

Сплавы

Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов, обладающих характерными свойства, присущими только металлическому состоянию.

Свойства сплавов – самые разнообразные и отличаются от свойств их компонентов, так, например, для того чтобы золото стало более твердым и пригодным для изготовления украшений, в него добавляют серебро, а сплав, содержащий 40 % кадмия и 60 % висмута, имеет температуру плавления 144 °С, т.е намного ниже температуры плавления его компонентов (Cd 321 °С, Bi 271 °С).

Возможны следующие типы сплавов:

Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге, например, Ag-Au, Ag-Cu, Cu-Ni и другие. Эти сплавы однородны по составу, обладают высокой химической стойкостью, проводят электрический ток;

Расправленные металлы смешиваются между собой в любых соотношениях, однако при охлаждении расслаиваются, и получается масса, состоящая из отдельных кристалликов компонентов, например, Pb-Sn, Bi-Cd, Ag-Pb и другие.

Рис. 128. Прибор для измерения нормального потенциала металла

Существует несколько теорий, объясняющих возникновение тока в гальванических элементах. Наиболее простая из них была выдвинута Нернстом (1888 г.)и позднее подробно развита академиком Л. В. Писаржевским на основе представлений о строении металлов из положительно заряженных ионов исвободных электронов.

Лев Владимирович Писаржевский родился в 1874 г.в. г. Кишиневе. Окончив естественный факультет Новороссийского университета (г. Одесса), Писаржевский был оставлен при нем для подготовки к прафессорскому званию. В 1902 г. он защитил магистерскую диссертацию, а в/1913 г. был избран профессором Екатеринославского горного института (г. Днепропетровск). С 1930 г. Писаржевский был действительным членом Академии наук СССР.

Крупный ученый и блестящий педагог, Писаржевский смело использовал достижения физики для изучения и объяснения химических процессов. Важнейшие его работы посвящены исследованию перекисей и надкислот, разработке теории растворов, приложению электронной теории к химии и разработке теории возникновения тока в гальванических элементах.

Возникновение тока в гальваническом элементе происходит следующим образом. Если погрузить любой металл в воду, ионы его начинают переходить в раствор под влиянием притяжения, испытываемого ими со стороны полярных молекул воды. Вследствие этого металл, в котором остается избыток электронов, заряжается отрицательно, а раствор - положительно. Однако число ионов, которое металл посылает в раствор, как показывает опыт, очень мало. Возникающий на металле по мере ухода ионов отрицательный заряд начинает притягивать обратно ушедшие из металла ионы, так что вскоре наступает состояние равновесия, при котором в единицу времени столько же ионов уходит из металла, сколько и возвращается в него:

металл⇄ионы металла

(в растворе)

Перешедшие в раствор ионы не распределяются равномерно по всей массе раствора, а вследствие притяжения к отрицательно заряженному металлу располагаются близ его поверхности, образуя так называемый двойной электрический слой (рис. 127). В результате между металлом и раствором устанавливается определенная разность потенциалов.

Лев Владимирович Писаржевский (1874-1938)

Предположим теперь, что мы прибавили к воде, в которую погружен металл, некоторое количество соли того же металла. Вследствие увеличения концентрации ионов металла в растворе равновесие между ними и металлом нарушится и часть ионов перейдет обратно в металл. Следовательно, в раствор своей соли

металл должен посылать меньше ионов, чем в чистую воду, и тем меньше, чем больше концентрация ионов в растворе. При достаточно большой концентрации соли ионы могут совсем не перейти из металла в раствор, так что ни металл, ни раствор не будут заряжены.

Наконец, если концентрация ионов металла в растворе достаточно велика, а активность металла сравнительно мала, металл не только не посылает ионов в раствор, но, наоборот, часть ионов переходит из раствора в металл. При этом между металлом и раствором тоже возникает разность потенциалов, но теперь уже раствор заряжается отрицательно за счет избытка отрицательных ионов соли, а металл - положительно. Практически дело обстоит так, что одни (более активные) всегда заряжаются в растворах своих солей отри-цательно, другие (менее активные) -положительно.

Следует заметить, что во всех случаях при погружении металла в раствор его соли количество переходящих в раствор или выделяющихся из раствора ионов настолько мало, что не может быть обнаружено химическим путем. Однако заряд их достаточно велик, чтобы создать поддающуюся измерению разность потенциалов.

Изложенная выше теория очень просто объясняет механизм действия гальванических элементов. Рассмотрим, например, медно-цинковый элемент. В этом элементе на цинковой пластинке, погруженной в раствор ZnSО 4 , возникает некоторый отрицательный заряд, а на меди, погруженной в раствор CuSO 4 ,- положительный заряд. Если не связаны друг с другом проводником, возникновение указанных зарядов, как мы видели выше, должно тотчас же приостановить и дальнейший переход ионов цинка в раствор, и выделение из раствора ионов меди. Но если соединить обе пластинки проволокой, то накапливающиеся на цинке электроны все время будут перетекать к медной пластинке, где их недостает. Таким образом, получает возможность посылать все новые и новые количества ионов Zn в раствор, у медной же пластинки ионы Сu разряжаются и выделяются в виде металлической меди. Этот процесс продолжается до тех пор, пока не растворится весь или не израсходуется вся медная соль.

Рис. 127. Двойной электрический слой

В гальванических элементах тот электрод, который в процессе работы элемента разрушается, посылая ионы в раствор, называется анодом, а электрод, у которого разряжаются положительные ионы, называется катодом.

Гальванический элемент может быть построен из любых двух металлов, погруженных в растворы их солей. При этом совершенно не обязательно, чтобы один металл заряжался «отрицательно, а другой - положительно. Единственным условием для перетекания электронов от одного заряженного тела к другому является существование разности потенциалов между ними. Но последняя должна возникнуть, какие бы мы ни взяли, так как способность отщеплять электроны и переходить в ионы у всех металлов различна. Если, например, составить гальванический элемент из цинка и железа, погруженных в нормальные растворы их солей, то, хотя оба металла заряжаются в растворах отрицательно, между ними все же возникнет некоторая разность потенциалов. При соединении металлов проводником электроны потекут от цинка, как металла более активного, к железу; будет растворяться, а - выделяться из раствора. Происходящая в элементе реакция выразится уравнением

Zn + Fe = Fe + Zn

Разность потенциалов, возникающая между металлом и раствором его соли, называется электродным потенциалом металла и может служить мерой его способности отдавать электроны или, что то же самое, мерой его химической активности при реакциях в растворах. Поэтому, измерив потенциалы всех металлов при одинаковых концентрациях их ионов, мы могли бы количественно охарактеризовать активность металлов.

К сожалению, прямое измерение этих величин очень затруднительно и не дает точных результатов. Это ясно уже из того, что нельзя, например, присоединить вольтметр к раствору, не погрузив в раствор металлический проводник. Но тогда возникает разность потенциалов между проводником и раствором, так что напряжение, показываемое вольтметром, будет зависеть от двух разностей потенциалов: разности потенциалов между интересующим нас металлом и раствором его соли и разности потенциалов между металлическим проводником и тем же раствором.

Гораздо легче измерить разность потенциалов (разность напряжений электронов) между двумя различными металлическими электродами, погруженными в растворы соответствующих солей, т. е. узнать, насколько потенциал одного металла больше или меньше потенциала другого металла. Если измерить таким образом относительные потенциалы всех металлов, сравнивая их потенциалы с потенциалом какого-нибудь одного из них, то полученные числа будут так же точно характеризовать активность металлов, как и абсолютные величины их потенциалов.

В качестве стандартного электрода, с потенциалом которого сравнивают потенциалы других металлов, принят так называемый нормальный водородный электрод. Последний состоит из платиновой пластинки, покрытой рыхлым слоем платины и погруженной в двунормальный раствор серной кислоты. Через раствор непрерывно пропускают под давлением в 1 ат ток чистого водорода, который, приходя в соприкосновение с платиной, в довольно большом количестве поглощается ею. Насыщенная водородом платиновая пластинка ведет себя так, как если бы она была сделана из водорода. При соприкосновении ее с раствором серной кислоты возникает определенная разность потенциалов (потенциал водородного электрода), условно принимаемая при измерениях относительных потенциалов за нуль.

Разность потенциалов между металлом, погруженным в раствор его соли, содержащий 1 грамм ион металла на литр, и нормальным водородным электродом называется нормальным потенциалом металла.

Для измерения нормальных потенциалов обычно пользуются приборами, подобными изображенному на рис. 128. По существу такой прибор представляет собой гальванический элемент, одним из электродов которого служит испытуемый металл, а другим - водородный электрод. Так как потенциал водородного электрода принимается за нуль, то, измерив разность потенциалов на полюсах такого элемента или его электродвижущую силу, мы непосредственно находим нормальный потенциал металла.

В табл. 27 указаны нормальные потенциалы важнейших металлов. Они берутся со знаком минус, когда потенциал металла ниже потенциала водородного электрода, и со знаком плюс, когда потенциал металла выше его.

Если расположить металлы, включая и , по убывающей величине напряжения их электродов, т. е. по убывающим отрицательным нормальным потенциалам (и возрастающим положительным), то получится тот же самый ряд напряжений.

Таблица 27

Нормальные потенциалы металлов

Металл Ион Потенциал в вольтах Металл Ион Потенциал в вольтах
К К - 2,92 Ni Ni - 0,23
Са Са - 2,84 Sn Sn - 0,14
Na Na - 2,713 Pb Pb - 0,126
Mg Mg - 2,38 н 2 H 0,000
Al Аl - 1,66 Сu Сu + 0,34
Мn Mn - 1,05 Hg Hg 2 + 0,798
Zn Zn - 0,763 Ag Ag + 0,799
Fe Fe - 0,44 Au Au + 1,42

Зная нормальные потенциалы металлов, легко определить электродвижущую силу любого элемента, состоящего из двух металлов, погруженных в растворы их солей. Для этого нужно только найти разность нормальных потенциалов взятых металлов.

Чтобы величина электродвижущей силы имела положительное значение, всегда вычитают из большего потенциала меньший. Например, электродвижущая сила медно-цинкового элемента:

э. д. с. = 0,34 - (-0,763) = 1,103

Понятно, что такую величину она будет иметь, если концентрации ионов Zn и Сu в соответствующих растворах равны 1 граммиону на 1 литр. Для иных концентраций потенциалы металлов, а следовательно, и электродвижущие силы могут быть вычислены по формуле, выведенной Нернстом:


Top