Самые сильные и разрушительные торнадо в истории человечества. Смерчи и торнадо

Обычные гладкие смерчи. Формы гладких смерчей не­обыкновенно разнообразны и быстро изменяются у одного и того же смерча. Характерной особенностью служит резкое ограничение, устойчивая гладкая поверхность, от­личающая смерчи от всех других атмосферных воздуш­ных образований. Вторая особенность - значительная длина и небольшой диаметр. Третья особенность - более или менее вертикальное положение.

В зависимости от соотношения длины и ширины мож­но выделить две группы смерчей: 1) змееобразные и 2) воронкообразные, хоботообразные и колонноподобные.

Змееобразные смерчи сравнительно редки. Кроме длинного извивающегося тела, напоминающего змею или бич, они отличаются наиболее горизонтальным положе­нием.

Очень длинный и тонкий смерч наблюдался в 1937 г. в штате Небраска (фото 9). И хотя в нижней части он был полупрозрачен и почти невидим, но вызвал образо­вание высокого и снизу широкого каскада пыли, Смерч опустился из полусферического черного облака.

Изучение ряда смерчей показало, что змееобразные формы рождаются в конечной стадии развития смерчей. Они разрываются, и смерч исчезает. Так, смерч у Пеша­вара в Пакистане 5 апреля 1933 г. в конце начал утон­чаться, стал змееобразным и наконец нитеподобным, очень длинным, сильно изогнулся, разорвался в середине и прекратил свое существование.

Хоботообразные, колонноподобные и воронкообразные смерчи наиболее многочисленны. Они обычно называются воронками. Типичный хоботообразный смерч наблюдался в Ленинграде 15 августа 1925 г.- явление для города чрезвычайно редкое. Если и замечаются иногда неболь­шие воронки в нижней части мощного грозового облака, то, как правило, эти зародышевые смерчевые образования не получают дальнейшего развития. Смерч 1925 г. про­явил себя во всей красе. Около 4 ч дня небо затянулось облаками, слышались раскаты грома от отдаленной грозы восточнее города. В 4 ч 2 мин в самом центре города можно было видеть, как из грозового облака, проходив­шего на восток-юго-востоке, спустилась воронка, напоми­навшая изогнутый хобот слона. Через 1-2 мин смерч стал уже похож на песочные часы: наиболее тонкая часть его была посредине.

Существовал смерч всего несколько минут. Быстро исчезла нижняя его часть, а к 4 ч 5 мин и верхняя, пре­вратившаяся в тонкий завиток, вошла в облако. Нижний конец смерча нельзя было наблюдать, так как его закры­вали дома. Судя по отсутствию каких-либо разрушений, он, вероятно, не доходил до земли.

В США преобладают небольшие смерчи, имеющие форму узкой и длинной, резко ограниченной воронки, расширяющейся у материнского облака и суживающейся к земле, где она сопровождается небольшим каскадом пыли. Воронка обычно светлее облака и хорошо видна из­дали. Это дает возможность жителям спрятаться в спе­циальные смерчевые погреба.

Эффектный хоботообразный смерч был сфотографи­рован 24 июня 1930 г. в штате Небраска (фото 2).

Типичный хоботообразный смерч…

Расплывчатые смерчи. Наиболее своеобразны разруши­тельные низкие широкие смерчи с нерезкими, расплыв­чатыми очертаниями. Благодаря последней особенности их иногда называют облаками, облачными массами. Нередко они имеют черный цвет.

Низкий смерч, ширина которого больше высоты, про­шел 15 марта 1938 г. над штатом Иллинойс. В результате пострадало 18 кварталов, погибло 10 человек, ущерб составил 500 тыс. долл. Высота смерча достигала 150-250 и.

Следует отметить известный смерч Трех Штатов 18 марта 1925 г. По числу жертв и принесенным убыткам он считается наиболее разрушительным. Начавшись в штате Миссури, смерч прошел почти прямо через Илли­нойс и закончился в штате Индиана. Характерной его особенностью было отсутствие резких очертаний. В Ин­диане он пересек территорию в виде темной массы с вет­ками деревьев. Один из очевидцев описывал его как «туман», катившийся на него крутящейся и кипящей мас­сой. Сила шторма все время была одинаковой. Если бы этот смерч случился в Европе, его, конечно, назвали бы бурей. Длина его пути оказалась 350 км, наибольшая ширина - 800-1600 м, скорость движения - от 115 до 96 км/ч, длительность - 3,5 ч. Характерными особен­ностями смерча были почти прямолинейное движение на северо-восток и отсутствие скачков, кроме того, он не отрывался от земли. Поэтому полное разрушение произо­шло на огромной площади - 426 км 2 .

Форма смерча была своеобразна: он имел вид непра­вильного, бешено вращавшегося облака. Вначале време­нами виднелась воронка, но очень скоро она скрылась в облаке, наполненном пылью и обломками.

Весьма интересен и другой знаменитый смерч мэттун­ский, прошедший над штатами Иллинойс и Индиана 26 мая 1917 г. Длина его пути была громадна - около 500 км, продолжительность 7 ч 20 мин, ширина 400- 1000 м. На всем протяжении он обладал обычной ворон­кой, но на расстоянии 15 км между городами Мэттун и Чарлстон воронки не было: по земле ползло черное кру­тящееся плотное облако, вызывавшее наибольшие разру­шения. Погибло около 110 человек. Наблюдатель-метео­ролог высказал предположение, что облако ползло так близко над землей, что для воронки не было места.

20 июня 1957 г. на город Фэрго надвинулось большое грозовое облако. Оно шло низко, но еще ниже, у его основания, обособилось небольшое облако. Оно повисло почти над землей. Скоро из его боковой части отошла широкая воронка. Через несколько минут она достигла земли, начав интенсивные разрушения. Облако все время шло очень низко, и воронка постоянно изменяла очерта­ния, сохраняя столбообразную форму, неправильную и расплывчатую. Она становилась то шире, то уже, спускалась все ниже, и наконец облако легло на город. Стало темно, как ночью. Страшный рев и свист ветра, грохот и треск ломающихся зданий и деревьев, обломки, несущие­ся в воздухе с невероятной скоростью,- такой представ­лялась картина смерча. Хорошо еще, что ширина полосы разрушений не превышала 1-1,5 км. К счастью, через несколько минут облако начало подниматься, снова обра­зовался громадный, широкий и низкий смерч с расплыв­чатыми очертаниями. Он становился все выше и уже, очертания его уплотнились, и через полчаса после его возникновения воронка приняла обычную хоботообразную форму, резко ограниченную. Еще через несколько минут началась последняя стадия существования смерча. Обла­ко шло уже на большой высоте, воронка удлинялась, изо­гнулась и стала тонкой, как веревка. Но и она шла по земле, причиняя разрушения, правда небольшие. Затем воронка разорвалась и ушла в облако. Общая длина пути смерча составила около 12 км. Смерч шел медленно, при ярком освещении и был заснят фото- и кинокамерами. На кадрах киносъемки хорошо видно, как расплывчатая громадная воронка становилась все ниже, наконец исчез­ла и материнское вращающееся облако легло на землю.

Другой расплывчатый смерч прошел 8 июня 1966 г. над городом Топика (Канзас). Он произвел в городе страшные разрушения. Пострадали не только обычные одно- и двухэтажные дома (иногда от них не оставалось ничего), но и громадные корпуса университета. Длина зоны разрушений 12 км. Убытки исчислялись суммой более 100 млн. долл., погибло 17 человек.

Групповые смерчи. Если смерчевое кучево-дождевое облако имеет небольшие размеры, несколько километров в поперечнике, то оно образует один смерч, реже - два-три. Громадные облака, с поперечником 30-50 км и более, часто являются родоначальниками группы смерчей иног­да значительных размеров.

11 апреля 1965 г. в центральных штатах США произо­шло небывалое - возникло сразу 47 смерчей. Они произ­вели колоссальные разрушения и вызвали гибель 257 че­ловек. Среди этих смерчей был редчайший двурогий, рас­плывчатый, с двумя соединенными воронками (фото 11).

Описанный смерч Трех Штатов рассматривается как единое образование, но огромные размеры смерчевого об­лака, 30X50 км в поперечнике, длительность существова­ния и разнообразие воронок позволяют предположить, что была группа воронок, возникавших друг за другом.

Скотсблаффская группа смерчей 27 июня 1955 г. вклю­чала 13 воронок, достигших земли, и значительное число зачаточных, висевших в воздухе. И она родилась из одно­го грозового облака.

Ирвингская группа 30 мая 1879 г., детально описан­ная Файнли, состояла не менее чем из 10 смерчей, вы­звавших громадные разрушения. Точные размеры смер­чевого облака неизвестны, но, судя по положению путей отдельных смерчей, они были большими, около 30 км в поперечнике.

Наиболее изучены пути смерчей группы Фэрго 20 июня 1957 г. Пять смерчей возникли из одного облака протяженностью около 130 км. Длина пути отдельных смерчей не превышала 20 км, ширина материнского обла­ка была в среднем 15-20 км.

Как уже говорилось, анализ смерчей показывает, что ведущим является кучево-дождевое грозовое облако, а смерчи - лишь вторичное образование, им создаваемое.

Основное явление, все определяющее,- это возникно­вение внутри облака спирального вихря, типа водоворота. Судя по наблюдениям, его диаметр не больше несколь­ких километров. Располагается материнский вихрь в ниж­ней части кучево-дождевого облака, не поднимаясь выше 3 км. Это подтверждается тем, что переносимые им орга­низмы часто не замерзают и остаются живыми.

Материнские вихри порождают не только смерчи и во­ронки, устремляющиеся книзу; есть воронки, которые взмывают ввысь, иногда пробивая плотную облачность. С этими башенными вихрями связано образование необы­чайно крупного града, нередко сопровождающего смер­чевое облако.

Как видим, группа смерчей представляет сложное атмосферное явление. В него входят сравнительно немно­гочисленные воронки, доходящие до земли, десятки зача­точных воронок, повисающих в воздухе, затем многие десятки, а иногда и сотни материнских вихрей, висящих в нижней части смерчевого облака, и наконец десятки башенных облаков-вихрей, обусловливающих выпадение града.

Водяные смерчи. 9 сентября 1954 г. у Туапсе во второй половине дня над морем нависли свинцово-черные тучи. Они медленно двигались к берегу. Неожиданно из сере­дины одного из облаков стал опускаться огромный серый хобот; навстречу ему поднялся столб водяных брызг и пыли. Потом все слилось в один водяной столб. Гигантский волчок, постепенно утолщаясь, приближался к бере­гу. Казалось, что море соединилось с небом и вода сама бежит вверх по необыкновенному шлангу. Не дойдя до берега, смерч начал постепенно ослабевать ив 16ч 59 мин распался. Он наблюдался всего 19 мин. Черноморские смерчи нередко выходят на берег, не теряя, а, наоборот, увеличивая свою силу.

Летом 1796 г. петербургский профессор Волке ехал на пассажирском парусном судне из Кронштадта в Любек. У выхода из Финского залива во время полного штиля на северо-западе появилось черно-синее грозовое облако. Оно низко ползло над морем. Вдруг из него появились два отростка. Поднялся небольшой ветер, и две водяные колонны, соединявшие море с облаком, быстро двинулись к судну. В основании колонн вода каскадом поднялась вверх на 3-4 м. Испуганные пассажиры бросились в каю­ты, спрятался и профессор. С сильным шумом смерч про­шел вдоль судна, облив его водой и оставив своеобразный сернистый запах. Повреждений почти не было. Волке вы­шел из каюты и с удивлением увидел, что по морю несут­ся уже шесть водяных колонн. Ученый оставил довольно детальное описание происшествия, опубликованное в 1802 г.

Не все водяные смерчи кончаются так благополучно. В 1880 г. у берегов Бискайского залива из громадного грозового облака над морем возникла мощная водяная колонна. Пройдя некоторое расстояние, она набрала силу и, выйдя на берег, обрушилась на деревню. В один момент вся деревня обратилась в груду развалин. Деревья были вырваны с корнем, в полосе шириной около 300 м, соот­ветствующей пути смерча, все перемешалось.

Как правило, водяные смерчи слабее, двигаются мед­леннее и существуют не так долго, как наземные.

Формы и размеры водяных смерчей разнообразны. Одни почти перпендикулярны, высоки, с громадным кас­кадом, другие обладают мощной, широкой воронкой, поч­ти одинаковой ширины на всем протяжении. Это настоя­щий водяной насос, легко поднимающий в материнское облако массы морской воды со всеми обитающими в ней организмами. Вероятно, такой смерч поднял в облако медуз, выпавших вместе с дождем в Кавалерово, в 50 км от берега.

В 1896 г. над Атлантическим океаном у берегов Мас­сачусетса из одного громадного грозового облака, двигав­шегося высоко над морем, 3 раза спускались громадные воронки. Одна из них была перетянута посередине и при высоте в 900 м имела диаметр у облака 120 м, в середи­не - 30 м, у воды - 45 м. Диаметр колоссального каска­да достигал 180 м, а высота - 90 м. Другая воронка была не меньше, но типичной хоботообразной формы. Ее высо­та 900 м, диаметр у облака 180 м, в середине 90 м и у воды 45 м. Каскад был еще больше; 230 м шириной и 180 м высотой. Эта воронка перед исчезновением чрезвычайно удлинилась, изогнулась, сделалась тонкой, как веревка, и разорвалась. Три воронки существовали всего 45 мин.

Очень редки низкие, широкие, расплывчатые смерчи, образующиеся, когда облако опускается к самой воде. У берегов Калифорнии такой смерч имел высоту всего 30 м, но ширину в 7 раз большую - 210 м.

Обобщив данные о нескольких сотнях водяных смер­чей, интересную сводку составил В. Е. Гард . Он подчеркивает чрезвычайную изменчивость водяных смерчей. Они то прозрачные, небольшие трубы, 2-3 м в диаметре, рассеивающие лишь тончайшую водяную пыль; то мощные столбы, выливающие на суда потоки воды и уносящие с палубы разные предметы; то громаднейшие воронки в десятки и даже сотни метров в поперечнике, ломающие мачты, переворачивающие суда и вызывающие громадные разрушения на берегу.

Значительно колеблется скорость вращения в воронке и соответственно количество морской воды, засасываемой вверх. У многих смерчей они невелики, что породило мнение, будто водяные смерчи состоят только из пресной воды, бывшей в облаке. Эта точка зрения не учитывает существования громадных мощных воронок, засасываю­щих в облако большие количества морской воды. Такие смерчи вызывают дожди с соленой водой, медузами, кра­бами и морскими рыбами.

Зарисовки стадий развития смерчей сделаны еще В. Рейдом (фото 13). 1. Начало. Над морем нависло огромное грозовое черное облако. В его средней части обособилось в виде низкой ступени материнское вращающееся облако с тонкой и острой воронкой посере­дине (для масштаба сбоку нарисовано большое трехмачто­вое парусное судно). 2. Полное развитие. Воронка удли­нилась, расширилась, приняла хоботообразную форму и достигла воды. Сформировался большой, высокий каскад. 3. Конец. Воронка, тонкая и узкая, втягивается в облако. Под ней еще сохраняется каскад, но скоро он упадет в море.

Одной из особенностей водяных смерчей является то, что часто они появляются группами (две-шесть воро­нок). Три воронки наблюдались у берегов Алжира (фото 12).

Водяной каскад - характерная черта этих смерчей. Каскады чрезвычайно изменчивы по форме и размерам. Редки воронки почти без каскадов, как у адриатического смерча 1950 г., но и у него почти правильная цилиндри­ческая воронка, возможно, внизу дополнена каскадом, тесно прижатым и слившимся с ней. Без него она была бы хоботообразной. Каскад высотой в несколько сот мет­ров тоже сравнительно редок. Каскады, плотно облекаю­щие воронку и образующие футляр, поднимающийся поч­ти до облака, тоже редки (фото 10). Наиболее распро­странены каскады средних размеров.

Подавляющее большинство смерчей связано с морем. В умеренных и субтропических широтах они образуются повсеместно. Их нет лишь в приполярных бассейнах и мало в тропиках, вблизи экватора.

Число морских смерчей велико и, вероятно, выше, чем наземных, но указать его точно невозможно, так как учет смерчей отсутствует.

Смерчи возникают как над соленой водой, так и над пресной. Площадь пресноводных бассейнов (озер и рек) неизмеримо меньше площади морских. Естественно, что и число пресноводных смерчей невелико. Известен ряд слу­чаев, когда смерчи появляются или исчезают над больши­ми озерами. Еще больше случаев, когда смерчи пересе­кают реки и озера.

Водяные смерчи над большими озерами аналогичны морским: они не отличаются ни формой, ни размерами и также связаны с низкими грозовыми облаками. В августе 1898 г. на озеро Эри надвинулось черное, низкое, плотное, высоко уходящее вверх облако. Вдруг часть нижней по­верхности его начала вращаться и опустилась вниз в виде воронки. Под концом воронки, на поверхности озера, вода начала как будто кипеть, брызги поднялись в воздух, и скоро каскад конической формы стал вытягиваться вверх. Через несколько минут каскад и воронка соедини­лись, образовав серый столб около 3 м в диаметре. Он быстро вращался и медленно двигался вперед вместе с облаком. Затем рядом с ним возникли шесть других смерчей и двинулись по озеру то прямо, то изгибаясь.

Интересный водяной смерч наблюдался на озере Иссык-Куль 14 октября 1928 г. Он был средних размеров, высотой в несколько сот метров, почти прямой, колонно­подобный, с небольшим каскадом (рис. 2). Иссык-кульский смерч обладал двумя особенностями, хорошо видимыми на рисунке. Первая - это длинная и узкая го­ризонтальная часть; она имела вид светлой тонкой изги­бающейся трубы. Вторая особенность - боковая развет­вляющаяся воронка с самостоятельным каскадом. Неясно, как вторичная, более тонкая воронка разветвляется ввер­ху и соединяется с основной колонной. По-видимому, она существовала самостоятельно, располагаясь сзади глав­ной воронки и соединяясь не с ней, а прямо с материнским облаком. Разветвление воронки вверху уникально; оно не наблюдалось ни у одного не только водяного, но и у на­земного смерча. Не исключена и ошибка автора рисунка. Упомянем знаменитый лорейнский смерч 1924 г. Появился он в 20 км к западу от озера Эри. Скоро он достиг больших размеров. Разрушив часть города Сандаски, смерч переместился на поверхность озера и спокойно двинулся по ней, следуя за материнским облаком. Над озером он прошел 40 км и, видимо, ослабел. У противо­положного берега он приблизился к большой моторной лодке. Сидевшие в ней люди рассказывали: «Мы увидали очень черное облако шириной около 2-3 км; оно шло очень быстро и было полно молний. Недалеко от нас из него выскочила воронка и быстро достигла воды; при этом навстречу ей вода поднялась в виде конуса. Баро­метр резко упал. Смерч прошел близко от нашей кормы, облив нас водой. Он содрал навес, плотно прибитый гвоз­дями, и засосал вверх. Со страшным ревом смерч двинул­ся прямо к городу Лорейну, сопровождаясь сильным лив­нем и громадными волнами».

На небольшой город Лорейн, стоящий на берегу озе­ра, смерч обрушился с новой силой. Он двинулся вдоль одной из главных улиц. Деревянные дома разрушились почти полностью, каменные же и кирпичные устояли, но у всех были сорваны крыши, а иногда и верхний этаж. Широкая улица почти сплошь была завалена обломками строений, битым стеклом, железными листами крыш. Автомобили, стоявшие на улице, были повреждены падав­шими на них обломками, многие сдвинуты с места и пере­вернуты. Смерч за несколько десятков секунд погубил 73 человека и принес убыток в 13 млн. долл.

Из города смерч прыжками двинулся дальше на севе­ро-восток, везде сея гибель и разрушения. За озером он прошел еще 20 км. Скорость движения была значитель­ной - около 160 км/ч. Воронка то достигала земли, то поднималась, иногда исчезала в облаке, иногда конец ее летел по воздуху. Скачки были различными, до 2-3 км и больше. Как уже говорилось выше, передвижение скач­ками нередко наблюдается и у наземных смерчей.

Огненные смерчи. Так называются смерчи, чьи мате­ринские облака созданы сильным огнем, массовым выде­лением тепла. Основными причинами выделения тепла служат вулканические извержения и громадные пожары. Они создают очень большие облака. Когда они движутся недалеко от поверхности земли, в них появляются вихре­вые движения. Эти движения, в свою очередь, формируют вращающиеся материнские облака, из которых и свисают воронки смерчей. Новые облака обычно недолговечны и на расстоянии 5-6 км от источника тепла изменяются или исчезают. Поэтому и смерчи, связанные с ними, кратковременны и обычно небольших размеров.

В 1963 г. посреди моря, недалеко от Исландии, нача­лось подводное извержение вулкана. Скоро конус его под­нялся выше уровня моря, образовав остров, получивший имя Сартси. Извержения продолжались. Каждый интен­сивный выброс вулкана давал громадные плотные кучевые облака, иногда низко свешивавшиеся над водой. В них возникали вихревые движения, порождающие смер­чи. Смерч длился несколько минут и прошел очень не­большое расстояние.

Смерчи, связанные с облаками, выброшенными вулка­нами, наблюдались также при извержении вулканов Миод-8ин в Японии и Парикутин в Северной Америке.

Классическим примером смерчей, возникших во время громадных пожаров, являются смерчи в Калифорнии в апреле 1926 г. При грозе с сильным ветром молния уда­рила в нефтехранилище громадных размеров. Произошел сильный взрыв, и нефть запылала. Затем зажглись сосед­ние нефтехранилища. Нефть горела пять дней. Макси­мальной силы пожар достиг на второй день, тогда на­блюдалось наибольшее количество смерчей. Все смерчи возникали вблизи пожара и не шли далее 4-5 км от него. Их возникновение было одинаково. Во время вспыш­ки огня поднималось особенно большое черное и плотное дымовое облако. Ветром его относило в сторону, и оно нависало над землей. На его нижней поверхности появля­лись вихревые спиральные токи воздуха, создававшие материнское облако небольших размеров. Из него и от­висали воронки смерчей.

Вначале смерч состоял из одного воздуха и был не­видим. На его существование указывал только каскад пыли там, где конец воронки касался земли.

Число огненных смерчей, созданных калифорнийским пожаром, значительно. Некоторые из них достигали боль­шой силы; один поднял в воздух на 1-1,5 м деревянный дом и перенес его в сторону на 50 м, полностью разру­шив; другой дом был поднят на 9 м, перемещен на 30 м и тоже превращен в груду обломков.

Пожары сопровождаются смерчами сравнительно ред­ко. Гораздо чаще они вызывают образование смерч-вих­рей и вертикальных вихрей, описанных ниже.

Смерч-вихри . Эти вихревые образования заслуживают особого названия. В полном развитии они близки к смер­чам, обладая воронкой, вверху связанной с облаком. Раз­личие заключается в том, что это облако у смерч-вихрей отнюдь не материнское, а потомковое. Начальные стадии развития у смерчей и смерч-вихрей противоположны: у смерчей образуется материнское облако и из него обо­собляется воронка, непрерывно с ним связанная и за ним следующая, у смерч-вихря возникает вертикальный вихрь, или воронка, а из нее и над ней образуется облако, Это облако по отношению к воронке является ее потомком. У смерча облако рождает воронку, у смерч-вихря воронка создает облако.

Существенны различия и в строении. У смерча осно­вой служит громадное кучево-дождевое грозовое облако. Оно достигает десятков километров в поперечнике и более 10 км высоты.

У смерч-вихря основой всего служит воронка - верти­кальный вихрь-, начинающийся над каким-либо источни­ком выделения тепла. Вращение внутри воронки значи­тельно слабее, и ее очертания расплывчатые. Облако, возникающее над ней, невелико. Разрушительная сила смерчей громадна, у смерч-вихрей она значительно меньше.

Образуются смерч-вихри по-разному. Бывают смерчи, которые в конце своего пути отрываются от материнского облака и выбегают вперед. Буквально в одну минуту над обособившимся смерчем появляется новое облако. Оно поднимается на высоту до 10 км. В новом облаке несколь­ко часов бывают видны интенсивные электрические раз­ряды.

В 1877 г. в Южно-Китайском море в непосредственной близости к шедшему кораблю на поверхности воды появи­лись брызги, как от выпрыгивающих летучих рыб. Скоро количество брызг увеличилось, они сконцентрировались, начали прыгать зигзагами, и вдруг из них образовался крутящийся столб шириной около 10 м и высотой 6 м. Столб быстро рос, и с его боков вода каскадами падала вниз. Сначала над столбом не было облака, но через не­которое время, когда высота столба стала значительной, над ним появилось облако. Оно было небольшое и серое, во, постепенно увеличиваясь, уплотнилось и стало черным. Водяной столб соединил его с морем, приняв форму водя­ного смерча. Все это происходило недалеко от корабля и непрерывно наблюдалось.

Большие лесные пожары, сжигания скирд соломы, куч хвороста часто вызывают образование громадных вращаю­щихся огненно-дымовых колонн. Над этими колоннами почти всегда возникают кучевые облака больших или меньших размеров. Иногда они настолько велики, что сами становятся материнскими облаками настоящих смер­чей. Получается интересная картина. В безоблачном небе стоит большое высокое кучевое облако. С одной стороны, оно все время питается поднимающимся с земли смерч-вихрем, с другой - из него спускается на землю настоя­щий смерч.

Огненно-дымовых смерч-вихрей так много, что в 1963 г. для них предложили название «фумулюс», а для создаваемых ими облаков - «кумулофумус» . Вихри и облака по существу представляют единое целое, наименование которого «смерч-вихрь».

Заслуживает внимания опыт по получению ис­кусственных смерч-вихрей. Французский исследователь Дж. Дессен , наблюдая пожар, сопровож­давшийся смерч-вихрем, решил, что если природа создает их, то может создать их и человек. Он разработал проект и построил чрезвычайно мощную нефтяную горелку, на­звав ее «метеотрон», т. е. создатель погоды. Идея опыта заключалась в том, чтобы при помощи большего или меньшего числа метеотронов возбудить огненный вихрь, а над ним облако таких размеров, чтобы оно могло изме­нять, формировать погоду.

Для создания искусственного облака он выбрал Саха­ру, где, как известно, облаков не так много. Группа из 15 метеотронов, расположенных кругом, дала огненный вращающийся столб, настоящий вихрь, диаметром в 40 м. Вверху огненный столб переходил в дымовой, венчавший­ся новообразованным кучевым облаком. Но все же облако было мало.

Тогда число метеотронов увеличили до 40. Возникший гигантский огненно-дымовой вихрь создал громадное чер­ное кучево-дождевое облако. Оно не уступало по величине облаку над пожаром калифорнийских нефтехранилищ. Ре­зультаты сказались сразу: из облака пошел дождь, а на его подветренной стороне появились материнские обла­ка - ступени. Образовались короткие и небольшие ворон­ки, скоро они достигли земли, став настоящими смерчами.

Опыты Дессена производились в 1960-1962 гг. Они показали, что человек в пустыне может создавать дожди и смерчи. Это исключительно интересно, но масштабы по­лученного дождевого облака по сравнению с масштабами всей Сахары были микроскопическими. Человек доказал, что он способен изменить погоду в пустыне, но цена это­го изменения слишком высока: расходы велики и не оп­равдываются полученным дождем.

Смерчи, или, как их называют на Американском континенте, торнадо – одно из самых загадочных и разрушительных явлений природы. Это атмосферный вихрь, возникающий в дождевом или грозовом облаке. Он выглядит как облачная воронка, распространяется с невероятной скоростью и способен причинить немалые разрушения. Сегодня мы поговорим о самых невероятных торнадо в истории человечества! Так что будет интересно!

Штат Техас, США

Самый мощный смерч, имевший просто невероятную скорость ветра и занесенный в Книгу рекордов Гиннеса был зафиксирован в США в городке Уичито-Фолс штата Техас 2 апреля 1958г. Максимальная скорость ветра составила 450 км/ч. Городок, по которому «прошелся» торнадо был полностью разрушен, дома поднимались в воздух, а некоторые предметы были перенесены на огромное расстояние. Смерч унес жизни 7 человек, а 100 были ранены. Ущерб от стихийного бедствия составил 15 млн. долларов.

Восточный Пакистан

Трагедия произошла в 1969 году, когда город Дакка был частью Восточного Пакистана (ныне Бангладеш). Торнадо обрушилось на северо-восточные окраины города. В результате, погибло около 660 человек, и было ранено в общей сложности 4000. Причем в тот день по территории современного Бангладеш прошлось два торнадо. Второй смерч пронесся по Хомна Упазила – области Комилла. Эти торнадо были частью одной штормовой системы, но после образования – разделились. Во время второго торнадо погибло 223 человека.

Оклахома

20 мая 2013 года разрушительный торнадо пронесся над американским штатом Оклахома. Буря прорезала полосу шириной 3 и длиной в 27 км. Сильнее всего пострадал Мур – пригородный городок с населением около 56 000. Большие участки города практически были сметены с лица земли. Скорость ветра достигала 267 км/час. Торнадо просуществовал целых 40 минут. В результате стихии погибло 24 человека. Более 230 человек получили ранения.

Янцзы, Китай

За последние десятилетия человечество научилось предугадывать появления торнадо, строить надежные сооружения для защиты и быстро эвакуироваться в случае катастрофы. Но июнь 2015 года продемонстрировал, что, несмотря на все достижения, человек все также беззащитен перед силой природы. Речной круизный корабль был застигнут врасплох ужасным смерчем, и это стоило жизни 442 пассажирам. К счастью, другие корабли были предупреждены о приближающемся урагане и не пострадали.

Торнадо трёх штатов

Третье из самых смертоносных торнадо в истории человечества, которое обрушилось на территорию США – торнадо Трех штатов. Это произошло в 1925 году. Торнадо имело самую высокую оценку по шкале Фуджита – F5 и породило еще восемь себе подобных монстров. Как следует из названия, 18 марта 1925 года этот смерч ударил сразу по трем штатам.

Основной удар был нанесен по штату Миссури, затем ураган переместился в Иллинойс и завершил свое смертоносное шествие в штате Индиана. Но в числе пострадавших были также штаты Алабама, Теннесси, Кентукки и Канзас. В результате погибло 695 человек, более 2000 получили ранения, а 50 000 человек остались без крыши над головой. Действие торнадо продолжалось 3,5 часа, и средняя скорость передвижения воронки составляла 100 км/час.

Мадарганж – Мризапур

В 1996 году смерч собрал свою кровавую жертву в местностях от Мадарганж до Мризапура. Причем никакие приготовления и вычисления ученых не смогли предотвратить смерть 700 человек и разрушение более 80 000 домов. Число раненных во время этого торнадо остается неизвестным, а вот количество погибших делает его вторым из самых смертельных торнадо в истории человечества.

Даулатпур-Сальтурия

Сложно найти страну, которая бы пострадала от последствий торнадо, как Бангладеш. Торнадо Даулатпур-Сальтурия считается самым смертоносным ураганом и разрушительным за всю письменную историю человечества. Из-за стихии 26 апреля 1989 года погибло около 1300 человек в течение всего нескольких минут. Гигантская воронка ударила по Маникганж, густо населенному району Бангладеш.

До сошествия торнадо в течение шести месяцев страна страдала от засухи – фактора, который, как полагают ученые, способствовал формированию этого смерча. Неудивительно, что торнадо, шириной 1,5 километра, полностью уничтожил все на своем пути. В итоге, около 12000 человек получили ранения и в общей сложности 80000 остались без крова.

СМЕРЧИ И ТОРНАДО. Смерч (синонимы – торнадо, тромб, мезо-ураган) – это очень сильный вращающийся вихрь с размерами по горизонтали менее 50 км и по вертикали менее 10 км, обладающий ураганными скоростями ветра более 33 м/с. Энергия типичного смерча радиусом 1 км и средней скоростью 70 м/с, по оценкам С.А.Арсеньева, А.Ю.Губаря и В.Н.Николаевского, равна энергии эталонной атомной бомбы в 20 килотонн тротила, подобной первой атомной бомбе, взорванной США во время испытаний «Тринити» в Нью-Мексико 16 июля 1945. Форма смерчей может быть многообразной – колонна, конус, бокал, бочка, бичеподобная веревка, песочные часы, рога «дьявола» и т.п., но чаще всего смерчи имеют форму вращающегося хобота, трубы или воронки, свисающей из материнского облака (отсюда и их названия: tromb- по французски труба и tornado – по испански вращающийся). Ниже на фотографиях показаны три смерча в США: в форме хобота, колонны и столба в момент касания ими поверхности земли, покрытой травой (вторичное облако в виде каскада пыли вблизи поверхности земли не образуется). Вращение в смерчах происходит против часовой стрелки, как и в циклонах северного полушария Земли.


В физике атмосферы смерчи относят к мезо-масштабным циклонам и их нужно отличать от синоптических циклонов средних широт (с размерами 1500–2000 км) и тропических циклонов (с размерами 300–700 км). Мезо-масштабные циклоны (от греческого meso – промежуточный) относятся к середине диапазона между турбулентными вихрями с размерами порядка 1000 м и менее и тропическими циклонами, образующимися в зоне конвергенции (схождения) пассатов на 5-ом градусе северной широты и выше, вплоть до 30-го градуса широты. В некоторых тропических циклонах ветер достигает ураганной скорости 33 м/с и более (до 100 м/c) и тогда они превращаются в тайфуны Тихого океана, ураганы Атлантики или вилли-вилли Австралии.

Тайфун – китайское слово, оно переводится как «ветер, который бьет». Ураган – это транслитерированное в русский язык английское слово hurricane . В больших синоптических циклонах средних широт ветер достигает штормовой скорости (от 15 до 33 м/с), но иногда и здесь он может стать ураганным, т.е. превысить предел 33 м/с. Синоптические циклоны образуются на зональном атмосферном течении, направленном в тропосфере средних широт северного полушария с запада на восток, как очень большие планетарные волны с размером, сравнимым с радиусом Земли (6378 км – экваториальный радиус). Планетарные волны возникают на вращающейся, сферической Земле и на других планетах (например, на Юпитере) под действием изменения силы Кориолиса с широтой и (или) неоднородного рельефа (орографии) подстилающей поверхности. Первыми важность планетарных волн для прогноза погоды осознали в 1930-х советские ученые Е.Н.Блинова и И.А.Кибель, а также американский ученый К.Россби, поэтому планетарные волны иногда называют волнами Блиновой – Россби.

Смерчи часто образуются на тропосферных фронтах – границах раздела в нижнем 10-километровом слое атмосферы, которые отделяют воздушные массы с различными скоростями ветра, температурой и влажностью воздуха. В области холодного фронта (холодный воздух натекает на теплый) атмосфера особенно неустойчива и формирует в материнском облаке смерча и ниже него множество быстро вращающихся турбулентных вихрей. Сильные холодные фронты образуются в весенне-летний и осенний период. Они отделяют, например, холодный и сухой воздух из Канады от теплого и влажного воздуха из Мексиканского залива или из Атлантического (Тихого) океана над территорией США. Известны случаи возникновения небольших смерчей в ясную погоду при отсутствии облаков над перегретой поверхностью пустыни или океана. Они могут быть совершенно прозрачными и лишь нижняя часть, запыленная песком или водой, делает их видимыми.

Наблюдаются смерчи и на других планетах Солнечной системы, например на Нептуне и Юпитере. М.Ф.Иванов, Ф.Ф.Каменец, А.М.Пухов и В.Е.Фортов изучали образование торнадо-подобных вихревых структур в атмосфере Юпитера при падении на него осколков кометы Шумейкера – Леви. На Марсе сильные смерчи возникнуть не могут из-за разреженности атмосферы и очень низкого давления. Наоборот, на Венере вероятность возникновения мощных торнадо велика, так как она имеет плотную атмосферу, открытую в 1761 М.В.Ломоносовым . К сожалению, на Венере сплошной облачный слой толщиной около 20 км скрывает ее нижние слои для наблюдателей, находящихся на Земле. Советские автоматические станции (АМС) типа Венера и американские АМС типа Пионер и Маринер обнаружили на этой планете в облаках ветер до 100м/с при плотности воздуха, в 50 раз превышающей плотность воздуха на Земле на уровне моря, однако смерчей они не наблюдали. Впрочем время пребывания АМС на Венере было кратким и можно ожидать сообщений о смерчах на Венере в будущем. Вероятно, смерчи на Венере возникают в зоне границы, отделяющей темную холодную сторону очень медленно вращающейся планеты от освещенной и нагретой Солнцем стороны. В пользу этого предположения говорит открытие на Венере и Юпитере грозовых молний, обычных спутников смерчей и торнадо на Земле.

Смерчи и торнадо надо отличать от образующихся на атмосферных фронтах шквальных бурь, характеризующихся быстрым (в течение 15 минут) возрастанием скорости ветра до 33 м/с и затем ее убыванием до 1–2 м/с (также в течении 15 минут). Шквальные бури ломают деревья в лесу, могут разрушить легкое строение, а на море могут даже потопить корабль. 19 сентября 1893 броненосец «Русалка» на Балтийском море был опрокинут шквалом и сразу же затонул. Погибло 178 человек экипажа. Некоторые шквальные бури, возникшие на холодном фронте, достигают стадии смерча, но обычно они слабее и не образуют воздушных воронок.

Давление воздуха в циклонах понижено, но в смерчах падение давления может быть очень сильным, до 666 мбар при нормальном атмосферном давлении 1013,25 мбар. Масса воздуха в торнадо вращается вокруг общего центра («глаза бури», где наблюдается затишье) и средняя скорость ветра может достигать 200 м/c , вызывая катастрофические разрушения, часто с человеческими жертвами. Внутри торнадо есть более мелкие турбулентные вихри, которые вращаются со скоростью, превышающей скорость звука (320 м/с). С гиперзвуковыми турбулентными вихрями связаны самые злые и жестокие проделки смерчей и торнадо, которые разрывают людей и животных на части или сдирают с них кожу и шкуру. Пониженное давление внутри смерчей и торнадо создает «эффект насоса», т.е. втягивания окружающего воздуха, воды, пыли и предметов, людей и животных внутрь тромба. Этот же эффект приводит к подъему и взрыву домов, попадающих в депрессионную воронку.

Классической страной торнадо является США. Например, в 1990 в США зарегистрировано 1100 разрушительных смерчей. Торнадо 24 сентября 2001 над футбольным стадионом в Колледж парке в Вашингтоне вызвало 3 смерти, ранило несколько человек и вызвало многочисленные разрушения на своем пути. Свыше 22 000 человек осталось без электричества.

В России наибольшую известность получили московские смерчи 1904 года, описанные в столичных журнальных и газетных публикациях как свидетельства многочисленных очевидцев. Они содержат все основные черты типичных смерчей русской равнины, наблюдающихся и в других ее частях (Тверская, Курская, Ярославская, Костромская, Тамбовская, Ростовская и другие области).

29 июня 1904 над центральной европейской частью России проходил обычный синоптический циклон. В правом сегменте циклона возникло очень большое кучево-дождевое облако с высотой 11 км. Оно вышло из Тульской губернии, прошло Московскую и ушло в Ярославскую. Ширина облака была 15–20 км судя по ширине полосы дождя и града. Когда облако проходило над окраиной Москвы, на нижней его поверхности наблюдали возникновение и исчезновение смерчевых воронок. Направление движения облака совпадало с движением воздуха в синоптических циклонах (против часовой стрелки, то есть в данном случае с юга-востока на северо-запад). На нижней поверхности грозовой тучи небольшие, светлые облака быстро и хаотично двигались в разные стороны. Постепенно, на беспорядочные, турбулентные движения воздуха налагалось упорядоченное среднее движение в виде вращения вокруг общего центра и вдруг из облака свесилась серая остроконечная воронка. которая не достигла поверхности Земли и была втянута обратно в облако. Через несколько минут после этого, рядом возникла другая воронка, которая быстро увеличивалась в размерах и отвисала к Земле. Навстречу ей поднялся столб пыли, становившийся все выше и выше. Еще немного и концы обоих воронок соединились, колонна смерча по направлению движения облака, она расширялась вверх и становилась все шире и шире. В воздух полетели избы, пространство вокруг воронки заполнилось обломками строений и сломанными деревьями. Западнее в нескольких километрах шла другая воронка, также сопровождавшаяся разрушениями.

Метеорологи начала 20 в. оценивали скорость ветра в Московских смерчах в 25 м/c, но прямых измерений скорости ветра не было, поэтому эта цифра ненадежна и должна быть увеличена в два-три раза, об этом свидетельствует характер повреждений, например изогнутая железная лестница, носившаяся по воздуху, сорванные крыши домов, поднятые в воздух люди и животные. Московские смерчи 1904 сопровождались темнотой, страшным шумом, ревом, свистом и молниями. Дождем и крупным градом (400–600 г). По данным ученых физико-астрономического института из смерчевого облака в Москве выпало 162 мм осадков

Особый интерес представляют турбулентные вихри внутри смерча, вращающиеся с большой скоростью, так что поверхность воды, например, в Яузе или в Люблинских прудах при прохождении смерча сначала вскипела и забурлила как в котле. Затем смерч всосал воду внутрь себя и дно водоема или реки обнажилось.

Хотя разрушительная сила московских смерчей была значительной и газеты пестрели самыми сильными прилагательными, нужно отметить, что по пятибалльной классификации японского ученого Т.Фуджита эти смерчи относятся к категории средних (F-2 и F-3). Наиболее сильные смерчи класса F-5 наблюдаются в США. Например, во время торнадо 2 сентября 1935 во Флориде скорость ветра достигала 500 км/час, а давление воздуха упало до 569 мм ртутного столба. Это торнадо убило 400 человек и вызвало полное разрушение построек в полосе шириной 15–20 км. Флориду не зря называют краем смерчей. Здесь с мая до середины октября смерчи появляются ежедневно. Например, в 1964 зарегистрировано 395 смерчей. Не все из них достигают поверхности Земли и вызывают разрушения.

Но некоторые, такие как торнадо 1935 года, поражают своей силой.

Подобные смерчи получают свои названия, например, торнадо Трех Штатов 18 марта 1925. Оно началось в штате Миссури, прошло по почти прямому пути через весь штат Иллинойс и закончилось в штате Индиана. Длительность смерча 3,5 часа, скорость движения 100 км/час, смерч прошел путь около 350 км. За исключением начальной стадии, торнадо везде не отрывалось от поверхности Земли и катилось по ней со скоростью курьерского поезда в виде черного, страшного, бешено вращающегося облака. На площади в 164 квадратной мили все было превращено в хаос. Общее число погибших – 695 человек, тяжело раненных – 2027 человек, убытки на сумму около 40 млн. долл., таковы итоги торнадо Трех Штатов.

Смерчи часто возникают группами по два, три, а иногда и более мезо-циклонов. Например, 3 апреля 1974 возникло более сотни смерчей, которые свирепствовали в 11 штатах США. Пострадало 24 тысячи семей, а нанесенный ущерб оценен в 70 млн. долл. В штате Кентукки один из смерчей уничтожил половину города Бранденбург, известны и другие случаи уничтожения смерчами небольших американских городов. Например, 30 мая 1879 два смерча, следовавшие один за другим с интервалом в 20 минут, уничтожили провинциальный городок Ирвинг с 300 жителями на севере штат Канзас. С Ирвингским торнадо связано одно из убедительных свидетельств огромной силы смерчей: стальной мост длиной 75 м через реку «Большая Голубая» был поднят в воздух и закручен как веревка. Остатки моста были превращены в плотный компактный сверток стальных перегородок, ферм и канатов, разорванных и изогнутых самым фантастическим образом. Этот факт подтверждает наличие гиперзвуковых вихрей внутри торнадо. Несомненно, что скорость ветра возросла при спуске с высокого и обрывистого берега реки. Метеорологам известен эффект усиления синоптических циклонов после прохождения горных цепей, например Уральских или Скандинавских гор. Наряду с Ирвингскими смерчами, 29 и 30 мая 1879 возникли два Дельфосских смерча западнее Ирвинга и смерч Ли к юго-востоку. Всего в эти два дня, которым предшествовала очень сухая и жаркая погода в Канзасе, возникло 9 смерчей.

В прошлом, смерчи США вызывали многочисленные жертвы, что было связано со слабой изученностью этого явления, сейчас число жертв от торнадо в США намного меньше – это результат деятельности ученых, метеорологической службы США и специального центра по предупреждению штормов, который находится в Оклахоме. Получив сообщение о приближении торнадо, благоразумные граждане США спускаются в подземные убежища и это спасает им жизнь. Впрочем встречаются и безумные люди или даже «охотники за торнадо», для которых это «хобби» иногда кончается гибелью. Смерч в городе Шатурш в Бангладеш 26 апреля 1989 попал в книгу рекордов Гиннеса как самый трагический за всю историю человечества. Жители этого города, получив предупреждение о надвигающемся смерче, проигнорировали его. В результате погибло 1300 человек.

Хотя многие качественные свойства смерчей к настоящему времени поняты, точная научная теория, позволяющая путем математических расчетов прогнозировать их характеристики, еще в полной мере не создана. Трудности обусловлены прежде всего отсутствием данных измерений физических величин внутри торнадо (средней скорости и направления ветра, давления и плотности воздуха, влажности, скорости и размеров восходящих и нисходящих потоков, температуры, размеров и скорости вращения турбулентных вихрей, их ориентации в пространстве, моментов инерции, моментов импульса и других характеристик движения в зависимости от пространственных координат и времени). В распоряжении ученых есть результаты фото и киносъемок, словесные описания очевидцев и следы деятельности торнадо, а также результаты радиолокационных наблюдений, но этого недостаточно. Торнадо либо обходит площадки с измерительными приборами, либо ломает и уносит аппаратуру с собой. Другая трудность состоит в том, что движение воздуха внутри торнадо существенно турбулентно. Математическое описание и расчет турбулентного хаоса – это сложнейшая и до сих пор в полной мере еще не решенная задача физики. Дифференциальные уравнения, описывающие мезо-метеорологические процессы, – нелинейные и, в отличие от линейных уравнений, имеют не одно, а много решений, из которых нужно выбрать физически значимое. Только к концу 20 в. ученые получили в свое распоряжение компьютеры, позволяющие решать задачи мезо-метеорологии, но и их памяти и быстродействия часто не хватает.

Теория торнадо и ураганов была предложена Арсеньевым, А.Ю.Губарем, В.Н.Николаевским. Согласно этой теории торнадо и смерчи возникают из тихого (скорость ветра порядка 1 м/с) мезо-антициклона (имеющегося, например, в нижней или боковой части грозового облака) с размером порядка 1 км, который заполнен (за исключением центральной области, где воздух покоится) быстро вращающимися турбулентными вихрями, образующимися в результате конвекции или неустойчивости атмосферных течений во фронтальных областях. При определенных значениях начальной энергии и момента импульса турбулентных вихрей на периферии материнского антициклона средняя скорость ветра начинает возрастать и меняет направление вращения, формируя циклон. С течение времени размеры формирующегося торнадо увеличиваются, центральная область («глаз бури») заполняется турбулентными вихрями, а радиус максимальных ветров смещается от периферии к центру торнадо. Давление воздуха в центре торнадо начинает падать, формируя типичную депрессионную воронку. Максимальная скорость ветра и минимальное давление в глазу бури достигается через 40 минут 1,1 сек после начала процесса образования торнадо. Для рассчитанного примера радиус максимальных ветров составляет 3 км при общем размере торнадо 6 км, максимальная скорость ветра равна 137 м/с, а наибольшая аномалия давления (разность между текущим давлением и нормальным атмосферным давлением) составляет – 250 мбар. В глазу торнадо, где средняя скорость ветра всегда равна нулю, турбулентные вихри достигают наибольших размеров и скорости вращения. После достижения максимальной скорости ветра торнадо начинает затухать, увеличивая свои размеры. Давление растет, средняя скорость ветра убывает, а турбулентные вихри вырождаются, так что их размеры и скорость вращения уменьшаются. Общее время существования торнадо для рассчитанного С.А.Арсеньевым, А.Ю.Губарем и В.Н.Николаевским примера составляет около двух часов.

Источником энергии, питающим торнадо являются сильно вращающиеся турбулентные вихри, присутствующие в первоначальном турбулентном потоке.

Фактически, в предложенной теории есть две термодинамическое подсистемы – подсистема А соответствует среднему движению, а подсистема В содержит турбулентные вихри. В расчетах не учитывалось поступление новых турбулентных вихрей в торнадо из окружающей среды (например, термиков – всплывающих вверх, вращающихся конвективных пузырей, образующихся на перегретой поверхности Земли), поэтому полная система А + В является замкнутой и суммарная кинетическая энергия всей системы со временем убывает из-за процессов молекулярного и турбулентного трения. Однако, каждая из подсистем является открытой по отношению к другой и между ними может происходить обмен энергией. Анализ показывает, что если значения параметров порядка (или, как их называют, критических чисел подобия, которых в теории пять) невелики, то среднее возмущение в виде начального антициклона не получает энергию от турбулентных вихрей и затухает под действием процессов диссипации (рассеяния энергии). Это решение соответствует термодинамической ветви – диссипация стремится уничтожить любое отклонение от состояния равновесия и заставляет термодинамическую систему вернуться к состоянию с максимальной энтропией, т.е. к покою (наступает состояние термодинамической смерти). Однако поскольку теория – нелинейна, то это решение не единственно и при достаточно больших значениях управляющих параметров порядка имеет место другое решение – движения в подсистеме А интенсифицируются и усиливаются за счет энергии подсистемы В. Возникает типичная диссипативная структура в виде торнадо, обладающая высокой степенью симметрии, но далекая от состояния термодинамического равновесия. Подобные структуры изучаются термодинамикой неравновесных процессов. Например, спиральные волны в химических реакциях, открытые и исследованные русскими учеными Б.Н.Белоусовым и А.М.Жаботинским. Другой пример – возникновение глобальных зональных течений в атмосфере Солнца. Они получают энергию от конвективных ячеек, имеющих намного меньшие масштабы. Конвекция на Солнце возникает из-за неравномерного нагрева по вертикали.

Нижние слоиатмосферы звезды нагреваются намного сильнее, чем верхние, которые охлаждаются из-за взаимодействия с космосом.

Полученные в расчетах цифры интересно сравнить с данными наблюдений Флоридского торнадо 1935 класса F-5, которое было описано Эрнстом Хемингуэем в памфлете Кто убил ветеранов войны во Флориде ?. Максимальная скорость ветра в этом торнадо оценивалась в 500 км/час, т.е. в 138,8 м/с. Минимальное давление, измеренное метеорологической станцией во Флориде, упало до 560 мм ртутного столба. Учитывая, что плотность ртути 13,596 г/см 3 и ускорение свободного падения 980,665 м/с 2 легко получить, что это падение соответствует значению 980,665·13,596·56,9 = 758,65 мбар. Аномалия же давления 758,65–1013,25 достигла –254,6 мбар. Как видно соответствие теории и наблюдений хорошее. Это согласие можно улучшить, слегка варьируя начальные условия, принятые при расчетах. Связь циклонов с понижением давления воздуха была отмечена еще в 1690 немецким ученым Г.В.Лейбницем . С тех пор барометр остается наиболее простым и надежным прибором для прогноза начала и конца торнадо и ураганов.

Предложенная теория позволяет правдоподобно рассчитывать и прогнозировать эволюцию смерчей, однако она выдвигает и немало новых проблем. Согласно этой теории, для возникновения торнадо нужны сильно вращающиеся турбулентные вихри, линейная скорость вращения которых иногда может превышать скорость звука. Существуют – ли прямые доказательства наличия гиперзвуковых вихрей, заполняющих возникающий смерч? Прямых измерений скоростей ветра в смерчах до сих пор нет и именно их должны получить будущие исследователи. Косвенные оценки максимальных скоростей ветра внутри торнадо дают положительный ответ на этот вопрос. Они получены специалистами по сопротивлению материалов на основании изучения изгиба и разрушений различных предметов, найденных в следе смерчей. Например, куриное яйцо было пробито сухим бобом так, что скорлупа яйца вокруг пробоины осталась невредимой, как и при прохождении револьверной пули. Часто наблюдаются случаи, когда мелкие гальки проходят через стекла, не повреждая их вокруг пробоины. Документально зафиксированы многочисленные факты пробивания летящими досками деревянных стен домов, других досок, деревьев или даже железных листов. Никакое хрупкое разрушение при этом не наблюдается. Втыкаются, как иглы в подушку, соломинки или обломки деревьев в различные деревянные предметы (в щепки, кору, деревья, доски). На фото показана нижняя часть материнского облака, из которого формируется торнадо. Как видно, она заполнена вращающимися цилиндрическими турбулентными вихрями.

Большие турбулентные вихри имеют размеры немногим меньшие, чем общий размер торнадо, но они могут дробиться, увеличивая скорость вращения за счет уменьшения своих размеров (как фигурист на льду увеличивает скорость вращения, прижимая руки к телу). Огромная центробежная сила выбрасывает из гиперзвуковых турбулентных вихрей воздух и внутри них возникает область очень низкого давления. Много в смерчах и молний.

Разряды статического электричества постоянно возникают из-за трения быстро движущихся частиц воздуха друг о друга и происходящей вследствие этого электризации воздуха.

Турбулентные вихри, также как и сам смерч, обладают очень большой силой и могут поднимать тяжелые предметы. Например, смерч 23 августа 1953 года в городе Ростове Ярославской области поднял и отбросил в сторону на 12 м раму от грузового автомобиля весом более тонны. Уже упоминался инцидент со стальным мостом длиной 75 м скрученным в плотный сверток. Смерчи ломают деревья и телеграфные столбы как спички, срывают с фундаментов и затем в клочки разрывают дома, опрокидывают поезда, срезают грунт с поверхностных слоев Земли и могут полностью высосать колодец, небольшой участок реки или океана, пруд или озеро, поэтому после смерчей иногда наблюдаются дожди из рыб, лягушек, медуз, устриц, черепах и других обитателей водной среды. 17 июля 1940 в деревне Мещеры Горьковской области во время грозы выпал дождь из старинных серебряных монет 16 в. Очевидно, что они были извлечены из клада, зарытого неглубоко в землю и вскрытого смерчем. Турбулентные вихри и нисходящие потоки воздуха в центральной области смерча вдавливают в землю людей, животных, различные предметы, растения. Новосибирский ученый Л.Н.Гутман показал, что в самом центре смерча может существовать очень узкая и сильная струя воздуха, направленная вниз, а на периферии смерча вертикальная составляющая средней скорости ветра направлена вверх.

С турбулентными вихрями связаны и другие физические явления, сопровождающие смерчи. Генерация звука, слышимого как шипение, свист или грохот, обычна для этого явления природы. Свидетели отмечают, что в непосредственной близости от смерча сила звука ужасна, но при удалении от смерча она быстро убывает. Это означает, что в смерчах турбулентные вихри генерируют звук высокой частоты, быстро затухающий с расстоянием, т.к. коэффициент поглощения звуковых волн в воздухе обратно пропорционален квадрату частоты и растет при ее увеличении. Вполне возможно, что сильные звуковые волны в смерче частично выходят за частотный диапазон слышимости человеческого уха (от 16 гц до 16 кгц), т.е. являются ультразвуком или инфразвуком. Измерения звуковых волн в торнадо отсутствуют, хотя теория порождения звука турбулентными вихрями была создана английским ученым М.Лайтхиллом в 1950-х.

Смерчи также генерируют сильные электромагнитные поля и сопровождаются молниями. Шаровые молнии в смерчах наблюдались неоднократно. Одна из теорий шаровой молнии была предложена П.Л.Капицей в 1950-х в ходе экспериментов по изучению электронных свойств разреженных газов, находящихся в сильных электромагнитных полях сверхвысокого частотного (СВЧ) диапазона. В смерчах наблюдаются не только светящиеся шары, но и светящиеся облака, пятна, вращающиеся полосы, а иногда и кольца. Временами светится вся нижняя граница материнского облака. Интересны описания световых явлений в смерчах, собранные американскими учеными Б.Вонненгутом и Дж.Мейером в 1968 «Огненные шары…Молнии в воронке…Желтовато-белая, яркая поверхность воронки…Непрерывные сияния…Колонна огня… Светящиеся облака… Зеленоватый блеск…Светящаяся колонна…Блеск в форме кольца…Яркое светящееся облако цвета пламени…Вращающаяся полоса темно-синего цвета…Бледно-голубые туманные полосы… Кирпично-красное сияние…Вращающееся световое колесо… Взрывающиеся огненные шары…Огненный поток…Светящиеся пятна…». Очевидно, что свечения внутри смерча связаны с турбулентными вихрями разной формы и размеров. Иногда светиться желтым светом весь смерч. Светящиеся колонны двух смерчей наблюдались 11 апреля 1965 в городе Толедо, штат Огайо. Американский ученый Г.Джонс в 1965 обнаружил импульсный генератор электромагнитных волн, видимый в смерче в виде светового круглого пятна голубого цвета. Генератор появляется за 30–90 минут до образования смерча и может служить прогностическим признаком.

Русский ученый Качурин Л.Г. исследовал в 70-х годах 20 в. основные характеристики радиоизлучения конвективных кучево-дождевых облаков, образующих грозы и торнадо. Исследования проводились на Кавказе с помощью самолетного радиолокатора в СВЧ диапазоне (0,1–300 мегагерц), сантиметровом, дециметровом и метровом диапазоне радиоволн. Было обнаружено, что СВЧ радиоизлучение возникает задолго до образования грозы. Предгрозовая, грозовая и послегрозовая стадии отличаются спектрами напряженности поля излучения, длительностью и частотой следования пакетов радиоволн. В сантиметровом диапазоне радиоволн, радар видит сигнал, отраженный от облаков и осадков. В метровом диапазоне отлично видны сигналы, отраженные от каналов сильных молний. В рекордно сильно грозе 2 июля 1976 в Аланской долине в Грузии наблюдалось до 135 молниевых разрядов в минуту. Увеличение масштабов грозовых разрядов происходило по мере уменьшения частоты их возникновения. В грозовом облаке постепенно образуются зоны с меньшей частотой разрядов, между которыми происходят наиболее крупные молнии. Л.Г.Качурин открыл явление «непрерывного разряда» в виде сплошной совокупности часто следующих импульсов (более 200 в минуту), амплитуда которых имеет практически неизменный уровень, в 4–5 раз меньший, чем амплитуды сигналов отраженных от молниевых разрядов. Это явление можно рассматривать как «генератора длинных искр», которые не развиваются в линейные молнии большого масштаба. Генератор имеет протяженность 4–6 км и медленно смещается, находясь в центре грозового облака – области максимальной грозовой деятельности. В результате этих исследований были выработаны методы оперативного определения стадий развития грозовых процессов и степени их опасности.

Сильные электромагнитные поля в торнадо-образующих облаках могут служить и для дистанционного отслеживания пути движения смерчей. М.А.Гохберг обнаружил вполне значимые электромагнитные возмущения в верхних слоях атмосферы (ионосфере), связанные с образованием и движением торнадо. С.А.Арсеньев исследовал величину магнитного трения в смерчах и высказал идею подавления торнадо методом запыления материнского облака специальными ферромагнитными опилками. В результате величина магнитного трения может стать очень большой и скорость ветра в торнадо должна уменьшиться. Способы борьбы с торнадо в настоящее время находятся в стадии изучения.

Сергей Арсеньев

Литература:

Наливкин Д.В. Ураганы, бури, смерчи . Л., Наука, 1969
Вихревая неустойчивость и возникновение смерчей и торнадо . Вестник Московского Государственного университета. Серия 3. Физики и астрономия. 2000, № 1
Арсеньев С.А., Николаевский В.Н. Рождение и эволюция торнадо, ураганов и тайфунов . Российская Академия Естественных Наук. Известия секции наук о Земле. 2003, Выпуск 10
Арсеньев С.А., Губарь А.Ю., Николаевский В.Н. Самоорганизация торнадо и ураганов в атмосферных течениях с мезо-масштабными вихрями. Доклады Академии Наук . 2004, т. 395, № 6



Введение

1. Природа возникновения торнадо и смерчей

2. Понятие торнадо

3. Правила поведения при приближении торнадо

4. Виды торнадо

5. Как образуются торнадо

6. Условия образования торнадо

7. Почему возникают торнадо

8. Правила присвоения имен ураганам, торнадо и тайфунам

9. Что внутри торнадо

Заключение

Список использованной литературы


Введение


История сохранила много сведений о природных катастрофах, которые в настоящее время называют тропическими циклонами и которые, в основном, формируются над океанами в тропиках, регулярно обрушиваясь на восточные и приэкваториальные районы материков. Тропические циклоны – это ураганы и тайфуны, встречающиеся в северной и южной частях Тихого океана, в Бенгальском заливе и Аравийском море, в южной части Индийского океана, у берегов Мадагаскара и северо-западного побережья Австралии. Обычно тропическим циклонам присваиваются имена.

Одним из коварных и неожиданно возникающих природных образований в атмосфере является смерч (торнадо). Он представляет собой вращающееся воронкообразное облако, которое протягивается от основания грозового облака до поверхности земли. Характерными скоростями ветра в торнадо является 65–120 км/ч, но иногда эта величина достигает 320 км/ч и более. Внешним признаком приближающегося смерча является шум, подобный грохоту движущегося товарного поезда. Возникновение торнадо связывается с сочетанием природных процессов, но еще со времен египетских фараонов известны торнадо искусственного происхождения, которые создавались над вершинами пирамид и знаменовали собой вознесение духа фараона в небо к Богу Солнца "Ра". Сохранившиеся в египетских иероглифах зарисовки торнадо не объясняют технику их образования.

Наиболее характерным регионом, где торнадо возникают довольно часто, является территория США. Хотя смерчи отмечаются по всему земному шару. На территории США за период с 1961 по 2004 гг. от торнадо погибало в среднем 83 человека в год. Чаще всего торнадо возникают в восточных штатах, прилегающих к Мексиканскому заливу, в феврале и марте их частота достигает максимума. На территориях штатов Айовы и Канзаса наибольшая частота возникновения торнадо приходится на май–июнь. Среднее количество торнадо на территории США оценивается величиной около 800 в год, из которых 50% приходится на апрель–июнь. Территориальная неоднородность частоты появления торнадо в США имеет устойчивые характеристики: в штате Техас – 120 торнадо/год, а в северо-восточных и западных штатах – 1 торнадо/год. Например, только за апрель и ноябрь 2002 г. по территории США пронеслось более 100 торнадо, оставив множество разрушений и вызвав более 600 случаев выплат страховок. Не оставляет в покое стихия и другие страны. Например, зимний ураган 2002 г. "Джанетт", пронесшийся над Европой, вызвал многочисленные разрушения и привел к страховым выплатам свыше 1 млрд. долларов.


1. Природа возникновения торнадо и смерчей


Торнадо и смерчи относятся к атмосферным вихрям мелкого масштаба. Природа возникновения этих атмосферных явлений похожа на природу появления тропических циклонов. Торнадо и смерчи имеют похожую структуру.

Рассмотрим, каким образом возникают торнадо и смерчи.

Из центра грозового облака, нижняя часть которого принимает своеобразную форму опрокинутой воронки, постепенно опускается огромный тёмный «хобот», вытягивающийся по направлению к поверхности моря или земли. Тут навстречу этому явлению поднимается широкая воронка, состоящая из воды и пыли. В открытую чашу образовавшейся воронки «хобот» погружает свой конец. Возникает сплошной столб, который может перемещаться со скоростью до 40 км/ч. Высота столба может достигать от восьмисот метров до полутора километров. Из мощного грозового облака может опускаться сразу не одна, а несколько смерчевых воронок, каждая из которых обычно приносит огромный урон.

Перемещение воздуха в системе торнадо и смерчей осуществляется против часовой стрелки. Но иногда бывает такое, что движение воздуха происходит по часовой стрелке. В это же время происходит подъём воздуха в виде спирали. На соседствующих участках может происходить опускание воздуха и таким образом вихрь замыкается. Под воздействием огромной скорости вращения в самом вихре появляется центробежная сила, которая способствует понижению давления в нём. Подобное приводит к тому, что во время передвижения вихря внутрь него всасывается всё то, что попадается по пути.


2. Понятие торнадо


Торнадо - быстро вращающийся столб воздуха, опускающийся из кучево-дождевого облака или образующийся под кучево-дождевым облаком, часто (но не всегда) виден как воронкообразное облако. Чтобы быть классифицированным как торнадо, вихрь должен исходить из облака и касаться земли. Известно, что торнадо может образовать невидимую воронку.

Как образуются торнадо в США?

Классический ответ на этот вопрос таков: теплый влажный воздух с Мексиканского залива сталкивается на территории США с холодным воздухом из Канады и сухим воздухом со Скалистых гор. При таких условиях возникает большое количество гроз, которые несут в себе угрозу возникновения торнадо. Самые разрушительные и смертоносные торнадо образуются под огромными кучево-дождевыми облаками, которые в США называют supersells, эти облака вращаются, образуя мезоциклоны. Эти облака часто приносят крупный град, шквалистый ветер, сильные грозы и ливни, а также и торнадо.

Сколько торнадо возникает в США ежегодно?

Каждый год в США возникает около тысячи торнадо. Точно сказать сложно, поскольку некоторые торнадо возникают в малозаселенной местности и поэтому не фиксируются.

В какое время года возникает больше всего торнадо?

В основном сезон торнадо длится с начала весны до середины лета. В некоторых штатах пик торнадо приходится на май, в других - на июнь или даже июль. Но вообще торнадо могут возникать в любое время года.

Что такое Аллея торнадо?

Это историческое название центральных американских штатов, в которых наблюдается наибольшее количество торнадо. Тем не менее торнадо могут возникать где угодно: и на западном, и на восточном побережье США, а также в Канаде и других государствах.

Как долго длится торнадо?

Торнадо может продолжаться от нескольких минут до часа и более. Но большая часть из них существует не более десяти минут.

Как торнадо в северном полушарии отличаются от торнадо в южном полушарии? Они отличаются направлением вращения. Большинство торнадо (но не все!) имеют циклоническое вращение, т. е. против часовой стрелки в северном полушарии и по часовой стрелке - в южном. Антициклонические торнадо вращаются в северном полушарии по часовой стрелке. Они чаще всего возникают в виде водяных смерчей, а также известно много случаев одновременного наблюдения циклонических и антициклонических торнадо под одной и той же грозой.


3. Правила поведения при приближении торнадо


Торнадо - сильный атмосферный вихрь над сушей, отличающийся исключительно большой повторяемостью.

Торнадо возникают достаточно часто, однако предугадать, где именно он возникнет в следующий раз, невозможно, и потому за торнадо приходится "гоняться". Подвижные лаборатории, которые используются в таких погонях, слишком хрупки и разрушаются раньше, чем успевают достичь центра торнадо и приступить к его изучению.

Получить торнадо в лаборатории в контролируемых условиях тоже пока не удалось: для этого потребовалась бы экспериментальная установка размером в сотни метров.

Торнадо до сих пор остается малопонятным атмосферным явлением, окруженным множеством мифов и заблуждений.

Обычно при наступлении торнадо есть время укрыться от невзгоды. На самом деле не всегда можно догадаться, что наступил настоящий ураган, так как он может начаться с града или сильным дождем. В лесистой местности, в горах или в городе очень часто опасность замечается именно тогда, когда она уже неизбежна. Также необходимо знать, что некоторые торнадо не имеют вид типичного столба, спускающего с тучи. Приход торнадо сопровождается сильнейшими ветрами, несущими обломки всего, что встретилось у них на пути.

Мой автомобиль может ехать гораздо быстрее торнадо. На самом деле, средняя скорость торнадо составляет 40-65 км/ч, а некоторые перемещаются с еще большей скоростью. Даже если ваш автомобиль может двигаться быстрее торнадо, это не означает, что вы должны продолжать свой путь, ведь торнадо движется в разнообразных направлениях. Если вы находитесь в пути и видите торнадо, движущееся в вашем направлении, сверните с пути его движения и найдите убежище.

Если нет другой возможности укрыться, то автомобиль станет более надежным убежищем, чем трейлер или загородный дом. На самом деле это не всегда так. Эта тема является горячо обсуждаемой в Северной Америке. Если есть время, можно запрыгнуть в авто и укрыться там. В случае с торнадо малой мощности автомобиль послужит надежным укрытием от предметов, переносимых потоком ветра или катящимся по земле. Лучше всего хорошо пристегнуться и пригнуть голову как можно ниже. Однако не стоит забывать, что более сильное торнадо может разрушить машины, находящиеся на его пути.

О приближении торнадо можно узнать достаточно заблаговременно, чтобы успеть предупредить население, благодаря доплеровским радарам. Доплеровские радары распознают образование осадков и ветер, сопровождающие бурю, и позволяют метеорологам обнаружить признаками приближающего торнадо. Но о приближении торнадо можно утверждать с уверенностью только когда торнадо находится в поле зрения. Если метеослужбы предупреждают о приближении грозы, то существует вероятность торнадо.


4. Виды торнадо


Торнадо – это узкий, вращающийся с огромной скоростью столб воздуха, протягивающийся до земли аж от основания грозового облака. Человек не всегда сможет распознать торнадо с первого взгляда, так как оно состоит из ветра, который невозможно увидеть. Существенным признаком является воронка, которая состоит из водяных капель. Делать торнадо заметным могут мусор и пыль, которые могут содержаться в воронке. Исследователи этого явления пришли к выводу, что торнадо не всегда может соприкасаться с землей.

Существует два вида этого стихийного бедствия:

– торнадо, которые возникли вследствие очень сильных гроз;

– торнадо, на появление которых повлияли другие факторы.

Самыми опасными считаются торнадо, появившиеся как результат грозы.

Супершторм – это гроза, которая длиться больше чем 1 час и продолжается за счет воздушного потока, который постоянно вращается.

Торнадо, которое относится ко второму виду, представляет собой ничто иное, как вихрь пыли и мусора, который образуется возле поверхности земли, вдоль линии потока ветра без воронки. Другим вариантом торнадо является смерч (ураган). Он выглядит как узкая веревочнообразная воронка.

Образование торнадо – удивительная загадка. Образование вихрей в природе происходит буквально на каждом шагу, взять бы хоть воронку, образующуюся при вытекании воды из ванной. Маленькая воронка в ванной и огромный смерч – явления одного порядка, правда, в воронке закрученная масса направлена вниз, а в торнадо – вверх. При выяснении того, как двигаются воздушные потоки внутри вихря, будет уместным упоминание о небольшом опыте великого Альберта Эйнштейна. Ученого очень сильно интересовал процесс, происходящий в чае при помешивании его ложкой. Оказывается, чаинки, плавающие на поверхности, при интенсивном вращении воды каким-то самым невероятным образом всегда оказывались в центре вращения. Эйнштейн объяснил это так: нижние слои жидкости вращаются с меньшей скоростью, а верхние – с большей. Именно поэтому все чаинки собираются к центру чашки и немного приподнимаются вверх.


5. Как образуются торнадо


Изучая причины возникновения торнадо, ученые используют теоретические разработки, данные, полученные в процессе наблюдений, физические модели, но на протяжении десятилетий торнадо продолжаю досаждать людям. Supercell-торнадо (торнадо, являющиеся следствием формирования облачной сверхячейки). Закручивающийся восходящий воздушный поток – краеугольный камень в образовании Supercell-бури и, как следствие, торнадо. Есть много теорий, в результате чего начинается этот процесс. Например: воздушный столб может начать закручиваться в результате «сдвига» ветров, когда воздушные массы на различных высотах от уровня земли перемещаются с различными скоростями или в различных направлениях. Сдвиг, в итоге приводящий к появлению торнадо, возникает например, когда ветер, дующий у самой земли, замедляется в результате трения от соприкосновения с поверхностью, тогда как в более удаленных от земли слоях атмосферы ветры дуют со скоростью, во много раз превосходящей нижние потоки, в результате «невидимая» воздушная труба начинает горизонтальное вращение. У нас все еще множество вопросов. Из наблюдений ученые выяснили, что около 20 процентов всех сильных бурь обычно порождают торнадо. Почему одна буря становится причиной торнадо, в то время как соседняя не менее мощная оканчивается без этого? Какие еще факторы кроме восходящих потоков питают торнадо? Какова роль нисходящих воздушных потоков и разницы температур и влажности (как в вертикальном, так и в горизонтальном направлениях распространения торнадо). К тому же не все торнадо имеют грозовое происхождение, что можно сказать о таких явлениях? Торнадо негрозового происхождения появляются не в результате мощного циркулирования воздушных масс на всей площади бури. Эти торнадо образуются в результате вертикального вращения участка воздушных масс происходящего возле самой поверхности земли, диаметром около 1-10 км, причиной которого явилось «смещение» ветра. Когда восходящий поток поднимается над местом подобного состояния воздушных масс, появляется большая вероятность зарождения торнадо. В восточной части Колорадо распространены подобные негрозовые торнадо, т.к. холодный воздух, приносимый с горных вершин, сталкивается с горячими воздушными потоками равнин. Поскольку такие торнадо случаются в основном на бедно заселенных территориях, ученые не могут точно определить их силу, но в целом, это не очень мощные ветры.


6. Условия образования торнадо


Детальные причины образования торнадо пока до конца не изучены. Ведь если будут известны все причины, тогда можно будет избежать и сам торнадо, и возможные последствия от его “разгула”.

На сегодня известны некоторые условия, при коих возникают торнадо. Для зарождения нужно, чтобы в нижних пластах атмосферы присутствовал влажный теплый воздух, а ветры должны дуть в южном направлении. А в верхних пластах атмосферы при этом должен быть сухой и холодный воздух. При таких условиях происходит подъем воздушной массы у поверхности земли, откуда торнадо набирает свою энергию.

Жизнь торнадо можно разделить на три фазы: зарождение, развитие и затухание. При зарождении торнадо в дождевом или кучево-дождевом облаке появляется воронка, которая вырастает по спирали к поверхности земли или воды. Энергия будущего торнадо формируется за счет термической конвекции, когда нагретый воздух уходит вверх. С каждой минутой с поднимающимся воздухом возрастает и скорость вращения будущего торнадо. От скорости вращения притягивается больше теплого воздуха, а от теплого воздуха увеличивается скорость вращения. И так по кругу, пока мощь не доберется до своего апогея. Тогда стартует вторая стадия - стадия полного развития. Здесь уже сформированное торнадо достигает максимальных значений в скорости и размерах и начинает свое движение. Более мощные и губительные торнадо наблюдаются на суше, в море они непродолжительны и не так сильны.

Третья стадия – затухания. Здесь скорость вращения воронки уменьшается, цвет от темного меняется на светлый, а само торнадо разрывается приблизительно пополам, одна часть уходит к земле, другая поднимается в “материнское” облако.

По времени жизнь любого торнадо занимает несколько десятков минут. Лишь некоторые наиболее мощные могут существовать несколько часов. Приблизительная скорость движения среднего торнадо составляет 60 километров в час, и очень редко достигает 200 километров в час.


7. Почему возникают торнадо


На сегодня природные катаклизмы, такие как торнадо, смерчи и ураганы, приносят большие разрушения, человеческие жертвы и сотни миллионов долларов материального убытка. Специалисты-метеорологи считаю, что наиболее разрушительные ураганы, участившиеся за последние десятилетия, напрямую связаны с глобальным потеплением климата. А так как температура в атмосфере с каждым годом продолжает неуклончиво и неконтролируемо расти, следует ожидать еще больше “подарков” от природы.

Смерч (торнадо, как его называют в Америке) представляет вращающийся нагретый воздушный поток. Скорость вращения при этом может доходить 1000 метров в секунду. Для его образования в атмосфере необходимы разреженные дождевые облака и мощный вертикальный поток воздуха между облаком и поверхностью земли. Наиболее мощные и разрушительные торнадо могут проходить до 500-1000 километров, обрушивая на месте затухания все то, что было им собрано по пути. Самый разрушительный торнадо имел место быть на территории США весной 1974 года. Тогда он насчитывал более 100 вихрей, которые забрали жизни более 30 человек (4000 при этом были ранены). Убыток исчислялся более 700-тами миллионов долларов.

Европейский смерч не менее опасен. Хотя более мощные смерчи образовываются на обширных равнинах, в Европе случались немалые разрушения от такого “нежданного гостя”. В России в том же 1974 году смерч даже опрокинул в реку 240-тонный строительный кран.

И смерчи, и торнадо являются локальными атмосферными образованиями, и по возможности встречу с ними можно избежать. А вот что действительно устрашает своей мощью, так это ураган. Обычно от ураганов страдает население тех стран, которые расположены от 5 по 35 градуса в северном полушарии. Здесь такие природные явления наиболее часты. Все ураганы возникают над океаном, точнее над наиболее прогретой его частью. Для образования урагана температура воды должна быть не менее 27 градусов по Цельсию. С космоса он напоминает тот же торнадо, только гораздо больше. А на периферии урагана могут образоваться новые вихревые потоки в виде смерчей, что сделает такой воздушный фронт еще мощнее и свирепее.

Самым "фатальным" ураганом в истории человечества (разумеется, то, что осталось в истории) стал ураган Катрина, который настиг южные штаты США 27-29 августа 2005 года. По мере приближения к побережью специалисты дали ему наивысший балл по шкале Саффира-Симпсона. Скорость ветра при урагане Катрина равнялась 220-280 километров в час.

Больше других в те дни вынес город Новый Орлеан, который был уничтожен на 80 процентов. Ураган Катрина забрал почти 2000 человеческих жизней и принес экономический ущерб в размере 125 миллиардов долларов.

Многие страны мира выделят средства на изучение и борьбу с такими природными явлениями. Но если предсказать еще можно приближение урагана или торнадо, то бороться сегодня нам не под силу.

8. Правила присвоения имен ураганам, торнадо и тайфунам


До того момента, как появилась первая в мире система присвоения имен ураганам, эти явления природв получали свои названия случайно, без какой-либо системности. Иногда ураганы называли в честь имени святого, в день которого происходило бедствие. Так, к примеру, получил свое имя ураган «Санта Анна», достигший города Пуэрто-Рико в 1825, в день святой Анны. Также название ураганы могло даваться по названию местности, которая наиболее пострадала от его воздействия. Иногда имя определялось самой формой этого явления. Таким образом, получил свое имя ураган «Булавка» 1935 года. Форма траектории данного урагана напоминала канцелярскую булавку.

Весьма интересным методом присвоения имен ураганам отличился австралийский метеоролог Клемент Рагг: он предлагал называть тайфуны в честь имен политиков, которые отказывались голосовать в пользу выделения кредитов на проведение метеоисследований.


9. Что внутри торнадо?


И по сей торнадо считается малопонятным атмосферным явлением. Основная трудность изучения состоит в том, что торнадо очень сложно изучить экспериментально. Подобные природные явления возникают достаточно часто, однако время их возникновения предугадать невозможно. Подвижные лаборатории, «гонящиеся за торнадо» разрушаются раньше, чем центр этого урагана успевает дойти до них.

Создать полноценное торнадо в лабораторных условиях до настоящего момент никому так и не удалось, так как для этого необходимо наличие экспериментальной установки размером в несколько сотен метров. Вся информация, имеющаяся у ученых на сегодняшний день, получена непрямым методом. Заметим, что для изучения торнадо используется астрономия. Так как «залезть» внутрь самого явления невозможно, приходится просто наблюдать за ним, пытаясь при этом понять его природу.

Что же находится в самом центре торнадо? Пока известно, что в центре находится область пониженного давления. В более мощных торнадо разность давления между внутренней и наружной частью составляет 0,1 атмосферы и более.


Заключение


Смерчи, бури и ураганы – это одни из самых мощных сил природной стихии. Они наносят значительный ущерб населению, вызывают значительные затруднения, приводят к человеческим жертвам. Их сравнивают с наводнениями и землетрясениями по разрушительному воздействию. Разрушающее действие смерчей, бурь и ураганов зависит от скоростного напора воздушных масс, который обладает метательным действием и обуславливает силу динамического удара.

Часто ураганы и бури сопровождаются выпадением града и грозовыми явлениями. Зарождаясь в океане ураган, приходит на сушу, принося с собой катастрофические разрушения. В результате совместного действия ветра и воды сносятся легкие и повреждаются прочные строения, опустошаются поля, обрываются провода линий связи и электропередачи, с корнями вырываются и ломаются деревья, гибнут люди и животные, уничтожаются дороги, тонут корабли.

Чем же так страшен ураган?

Во-первых, своими ураганными волнами, которые обрушиваются на побережье. Ураган на берег как бы выдавливает перед собой огромные волны, высота которых достигает нескольких метров. В прибрежных районах они приводят с сильным наводнениям, и разрушают все, что встречается им на пути. Очевидцы таких мощных и страшных волн редко остаются в живых.

Во-вторых, катастрофическими наводнениями и ливнями. Все дело в том, что при зарождении ураган вбирает в себя огромные массы водяного пара, который конденсируется и собирается в мощные и большие грозовые облака, которые вызывают наводнения не только в прибрежной зоне, но и в районах, значительно удаленных от берега, и служащие источником катастрофических ливней. Ливневые осадки, которые сопровождают ураганы, также становятся причиной появления оползней и селевых потоков.


Список использованной литературы


1. Дж. Кристенсон «Торнадо и смерчи» М. Эколитгиз 2004

2. Сибиряков А.С. «Мировые природные катастрофы» Л. Издательство «Дело» 2009

3. Ханжин Г.Б. «Ветра изнутри» Инфра-М, 2001.

Во многих странах называют смерч торнадо, ведь фактически это одно и то же природное явление. Зона их постоянного распространения - это умеренные и тропические широты на территории Северной Америки, Европы и Азии. Многие люди во время этого бедствия оказываются внутри жилого или хозяйственного здания, так что лишь потом узнают о том, что пережили. Разумеется, если им удаётся пережить нашествие стихии.

Люди, пережившие смерч описание дают приблизительно одинаковое. Их вместе с постройками и предметами поднимает в воздух и кружит ветром чудовищной силы. Вихрь разрушает многие конструкции и оставляет после себя толстый слой пыли, земли и строительного мусора. Определённый шанс выжить есть у тех, кто оказывается на периферии, поскольку разогнавшийся до сверхзвуковой скорости ветер попросту поднимает и перебрасывает постройки вместе с содержимым. Сооружения, оказавшиеся в центре вихря, чаще всего оказываются перемолоты и расплющены о землю.

Общее описание

Итак, что такое торнадо? То же, что и смерч, а именно - разновидность ураганного ветра, который не просто дует в каком-то направлении, а закручивается в воронку и за счёт этого обладающий гораздо большей разрушительной силой.

Там, где нет ни гроз, ни сильных перепадов давления, никакие виды торнадо не возникают, поэтому в «зоне риска» оказываются прежде всего тропические широты. Данному явлению предшествует появление чёрной грозовой тучи. Усиление шторма сопровождается тем, что с одной, а иногда и с нескольких сторон облачной массы образуется воронка вихря - тянущийся к земле «хобот».

Природное явление торнадо образуется по определённым законам. В Северном полушарии воронка закручена по часовой стрелке, в Южном - против часовой. Скорость движения воздушных масс может достигать 30 и более метров в секунду. «Хобот» протягивается к земле и образует воронку высотой до полутора километров. Ширина смерча, зародившегося над водой, может достигать сотни метров, а над сушей вихрь может иметь диаметр до километра и даже более.

Во многих рассказах очевидцев, в художественных произведениях описание торнадо сопровождается множеством эпитетов. Что же до конкретных параметров, то воздушная масса перемещается по спирали со скоростью порядка 30 метров в секунду, а при особо разрушительных смерчах этот показатель может достигать сотни метров в секунду. С места на место воронка перемещается примерно так же, как это делал бы легковой автомобиль. Скорость движение тучи с вихрем вдоль поверхности в среднем составляет от 20 до 60 км/ч.

Итак, смерч что это такое и почему он так разрушителен? Это вихрь огромной силы, который легко перемещает предметы - ветки, камни, мусор, транспорт, постройки - и сталкивает их друг с другом, причиняя огромные разрушения. Всего за пару минут большая часть строения сметается воронкой, после этого на разрушенной территории начинается мощнейшая гроза с ливнем.

Условия появления и принцип действия

Исследователи уже могут чётко ответить на вопрос о том, что такое смерч. Это всего лишь разновидность движения воздуха, который нас окружает. Чтобы стихия обрела разрушительную силу, необходимо сложить вместе некоторые условия - просто так этого не происходит никогда. Как правило, местом образования смерчей становятся грозовые тучи на высоте трёх-четырёх километров, где потоки восходящего воздуха могут резко изменяться и по направлению, и по скорости.

Все виды смерчей появляются из-за столкновения тёплых и холодных воздушных масс. При этом конденсируется водяной пар и выделяется тепло. Оно уходит вверх и создаёт зону пониженного давления, куда в полном соответствии с законами физики втягивается окружающий воздух. С определённого момента этот процесс начинает усиливать сам себя за счёт того, что температура охлаждённых воздушных масс становится ещё меньше, а разница давлений возрастает. В этих случаях и образуются смерчи торнадо.

Высвобожденная за счёт разницы давлений энергия образует воронку, как если бы работал огромный пылесос - это довольно точное для торнадо описание. В зону разрежения втягивается уже не только воздух - там же могут оказаться и крупные объекты, которые обычный ветер ни за что не поднял бы с земли. При этом опасность природного явления повышается за счёт того, что из-за грозы или ливня заметить смерч издали и подготовиться к нему не всегда возможно.

Над землёй «хобот» движется, всасывая новые объёмы холодного или тёплого воздуха. Как только они иссякают, природное явление смерч начинает терять свою силу. Воронка утрачивает связь с землёй, поднимается всё выше и в конечном итоге растворяется среди вихревых воздушных масс. Между появлением и исчезновением данного явления проходит от нескольких минут до нескольких часов (зафиксированный мировой рекорд превысил семь часов).

Разновидности

Ключевым фактором для определения мощности является скорость торнадо - по ней ему присваивается условная категория разрушительности. Разновидности же выделяют по физическим особенностям самого вихря:

  • Бичеподобный - самый распространённый и наименее разрушительный. Воронка хорошо просматривается и имеет классическую форму «хобота», причём очень узкого относительно высоты.
  • Расплывчатый - напоминает вихревое облако, диаметр которого значительно превосходит высоту. Как и обычный ураган явление это бывает разрушительным, поскольку охватывают сразу большую территорию.
  • Составной - один крупный смерч и несколько вихрей поменьше вокруг. Суммарная разрушительная мощь бывает очень высокой.
  • Огненный - возникает на месте извержения вулкана либо пожара. Огонь разносится по широкой территории, причиняя дополнительный ущерб.
  • Водяной - образуется над морем или океаном, «живёт» всего несколько минут. Мощным вихрем вода успевает разнестись по территории, но из-за этого сама воронка слабеет и вскоре исчезает.
  • Земляной - как несложно догадаться, зная, что такое смерч, крайне редкое явление. В этом случае воронка затягивает грязь, песок и камни. Как правило, это случается, если вихрь образовался на месте оползня или землетрясения. Каждый камень, поднятый ветром чудовищной силы, способен причинить дополнительные разрушения.
  • Снежный - появляется в условиях метели. Воронка затягивает в себя большие массы снега.
  • Песчаный - нередко рассматривается как отдельный феномен. Если явление природы ураган образуется в облаке, то песчаный вихрь появляется на земле, под воздействием солнечных лучей. Закручивая столб песка, ветер поднимает его в воздух и образует воронку, похожую на смерч, которая также способна перемещаться вдоль поверхности земли и существовать до нескольких часов.

Разница между смерчем и ураганом

В отличие от торнадо ураган не закручивается воронкой. Это сильный ветер, который дует вдоль поверхности со скоростью 30 метров в секунду и выше. Образуются ураганы также где-то поблизости от побережья, над сушей или над морем, поскольку именно в прибрежных районах наиболее сильна разница давлений.

Люди издавна хотели знать: смерч что это? Им удалось установить, что это атмосферное явление, возникающее из-за перепада давлений, как и любой ветер. Ураган по своей природе схож с обычным морским бризом, только мощнее во много раз и из-за этого столь разрушителен. Торнадо смерч образуется где-то в одном месте. Шквальный же ветер, который переходит в ураган, может дуть сразу на огромной территории. Нередко бедствие сопровождается наводнением. Воздушная масса способна вырывать деревья, обрушивать дома, поднимать и швырять на землю транспорт, людей, различные предметы.

Область распространения смерчей и ураганов

Многие воронки образуются над океаном или морем, но так и не «добираются» до береговой линии. Смерч на воде практически безразличен людям - свою разрушительную силу он обретает исключительно на суше. Раньше область, где они часто проникали вглубь материков, была сравнительно небольшой. Но в последнее время эта территория расширяется, что вызывает беспокойство исследователей, ведь скорость смерча сравнима со скоростью автомобиля, поэтому убежать от него невозможно. Можно лишь подготовиться.

В обоих полушариях Земли регионы умеренной полосы между 45-й параллелью и 60-й - это места, где ураган явление природы вполне распространённое и не особо удивляющее жителей. На территории Северной Америки вихри образуются и намного южнее, вплоть до тропических широт (30-я параллель). Таким образом, большая часть территории США находится в «зоне риска» и с разной периодичностью страдает от разрушений. Природа торнадо такова, что в тёплое время года они образуются примерно в пять раз чаще, чем зимой.

Как защититься и спасти себя?

Предупреждён - значит вооружён. Несмотря на разрушительность атмосферных вихрей, человек в состоянии спастись, предприняв определённые усилия. Многочисленные фото торнадо и смерчей, а также их последствий позволили выработать определённые правила:

  1. Прятаться нужно в самом прочном здании или сооружении. Стальные и железобетонные конструкции часто выдерживают напор стихии.
  2. Пещера, подвал или погреб могут стать убежищем от атмосферного вихря.
  3. Прячась в любом строении, нужно отойти подальше от дверей и окон, ведь именно по ним стихия бьёт раньше всего.
  4. Все проёмы в здании нужно закрыть с той стороны, откуда идёт смерч. С противоположной стороны их нужно открыть и закрепить в таком положении.
  5. Часто торнадо смерчи разрушают коммуникации и провоцируют аварии. Поэтому газ и электричество нужно перекрыть.

Нельзя прятаться от стихии в машине, поскольку любой транспорт вихрь может поднять вверх и бросить на землю с большой высоты. Тем, кто оказался вдали от любых потенциальных убежищ, нужно уходить, двигаясь перпендикулярно направлению, в котором идёт воронка. Если же и такой возможности нет, нужно найти любую яму или траншею, лечь и максимально прижаться к земле - это повысит шанс выжить.

Смерч природное явление опасное, разрушительное и всё ещё недостаточно изученное. Но любой человек может быть готов к встрече с ним.


Top