Классификация материалов по отношению к способности проводить электрический ток

Ценность металлов напрямую определяется их химическими и физическими свойствами. В случае с таким показателем, как электропроводимость, эта связь не так прямолинейна. Самый электропроводный металл, если измерять данный показатель при комнатной температуре (+20 °C), - серебро.

Но высокая стоимость ограничивает применение деталей из серебра в электротехнике и микроэлектронике. Серебряные элементы в таких приборах применяются только в случае экономической целесообразности.

Физический смысл проводимости

Использование металлических проводников имеет давнишнюю историю. Ученые и инженеры, работающие в областях науки и техники, использующих электроэнергию, давно определились с материалами для проводов, клемм, контактов, и т. д. Определить самый электропроводный металл в мире помогает физическая величина, называемая электрической проводимостью.

Понятие проводимости обратно электрическому сопротивлению. Количественное выражение проводимости связано с единицей сопротивления, которое в международной системе единиц (СИ) измеряется в Омах. Единица в системе СИ - сименс. Русское обозначение этой единицы - См, интернациональное - S. Электрической проводимостью в 1 См обладает участок электрической сети с сопротивлением в 1 Ом.

Удельная проводимость

Мера способности вещества проводить электроток называется Самым высоким подобным показателем обладает самый электропроводный металл. Эта характеристика может быть определена для любого вещества или среды инструментально и имеет числовое выражение. цилиндрического проводника единичной длины и единичной площади сечения связана с удельным сопротивлением данного проводника.

Системной единицей удельной проводимости является сименс на метр - См/м. Чтобы выяснить, какой из металлов самый электропроводный металл в мире, достаточно сравнить их удельную проводимость, определенную экспериментально. Можно определить удельное сопротивление при помощи специального прибора - микроомметра. Эти характеристики являются обратнозависимыми.

Проводимость металлов

Само понятие как направленного потока заряженных частиц кажется более гармоничным для веществ, основанных на кристаллических решетках свойственных металлам. Носителями зарядов при возникновении электрического тока в металлах являются свободные электроны, а не ионы, как это бывает в жидких средах. Экспериментально установлено, что при возникновении тока в металлах не происходит переноса частиц вещества между проводниками.

Металлические вещества отличаются от других более свободными связями на атомарном уровне. Внутреннее устройство металлов отличается присутствием большого числа «одиноких» электронов. которые при малейшем воздействии электромагнитных сил образуют направленный поток. Поэтому не зря именно металлы являются лучшими проводниками электрического тока, и именно такие молекулярные взаимодействия отличают самый электропроводный металл. На особенностях структуры кристаллической решетки металлов основано еще одно их специфическое свойство - высокая теплопроводность.

Топ лучших проводников - металлов

4 металла, имеющие практическое значение для их применения в качестве электропроводников распределяются в следующем порядке относительно величины удельной проводимости, измеряемой в См/м:

  1. Серебро - 62 500 000.
  2. Медь - 59 500 000.
  3. Золото - 45 500 000.
  4. Алюминий - 38 000 000.

Видно, что самый электропроводный металл - серебро. Но подобно золоту, оно используется для организации электрической сети лишь в особых специфических случаях. Причина - высокая стоимость.

Зато медь и алюминий - самый распространенный вариант для электроприборов и кабельной продукции благодаря низкому сопротивлению электрическому току и ценовой доступности. Другие металлы применяются в качестве проводников редко.

Факторы, влияющие на проводимость металлов

Даже самый электропроводный металл снижает свою проводимость, если в нём присутствуют другие добавки и примеси. У сплавов иная, чем у «чистых» металлов, структура кристаллической решетки. Она отличается нарушением в симметрии, трещинами и другими дефектами. Снижается проводимость и при повышении температуры окружающей среды.

Повышенное сопротивление, присущее сплавам, находит применение в нагревательных элементах. Неслучайно для изготовления рабочих элементов электропечей, обогревателей применяют нихром, фехраль и другие сплавы.

Самый электропроводный металл - это драгоценное серебро, больше используемое ювелирами, для чеканки монет и т. д. Но и в технике и приборостроении его особые химические и физические свойства находят широкое применение. Например, кроме использования в узлах и агрегатах с пониженным сопротивлением, серебряное напыление предохраняет контактные группы от окисления. Уникальные свойства серебра и сплавов на его основе часто делают его применение оправданным, несмотря на высокую стоимость.

Каждый человек, постоянно пользуясь электроприборами, сталкивается с со свойствами электропроводности, а именно:

Все вещества в зависимости от электропроводности делятся на проводники, полупроводники и диэлектрики:

1. проводники - которые пропускают электрический ток;

2. диэлектрики - обладают изоляционными свойствами;

3. полупроводники - сочетают в себе характеристики первых двух типов веществ и изменяют их в зависимости от приложенного управляющего сигнала.

К проводникам относят те вещества, которые имеют в своей структуре большое количество свободных, а не связанных электрических зарядов, способных начинать движение под воздействием приложенной внешней силы. Они могут быть в твердом, жидком или газообразном состоянии.Самыми отличными проводниками электрического тока являются металлы. Растворы солей и кислот, влажная почва, тела людей и животных - также хорошие проводники электрических зарядов.

Если взять два проводника, между которыми образована разность потенциалов и подключить внутри них металлическую проволоку, то сквозь нее потечет электрический ток. Его носителями станут свободные электроны, не удерживаемые связями атомов. Они характеризуют величину электрической проводимости или способность любого вещества пропускать через себя электрические заряды - ток.

Значение электрической проводимости обратно пропорционально сопротивлению вещества и измеряется соответствующей единицей: сименсом (См).

1 См=1/1 Ом.

В природе носителями зарядов могут быть:

электроны;

ионы;

дырки.

По этому принципу электропроводность подразделяют на:

электронную;

ионную;

дырочную.

Качество проводника позволяет оценить зависимость протекающего в нем тока от значения приложенного напряжения. Ее принято называть по обозначению единиц измерения этих электрических величин - вольтамперной характеристикой.

Проводники с электронной проводимостью (проводники 1-го рода)

Наиболее распространенным представителем этого типа являются металлы. У них электрический ток создается исключительно за счет перемещения потока электронов.

При прохождении электрического тока через металлические проводники не изменяются ни их масса, ни их химический состав. Следовательно, атомы металлов не участвуют в переносе электрических зарядов. Исследования природы электрического тока в металлах показали, что перенос электрических зарядов в них осуществляется только электронами.

Внутри металлов они находятся в двух состояниях:

связанные силами атомного сцепления;

свободные.

Электроны, удерживаемые на орбите силами притяжения ядра атома, как правило, не участвуют в создании электрического тока под действием внешних электродвижущих сил. Иначе ведут себя свободные частицы.

Если к металлическому проводнику не приложена ЭДС, то свободные электроны движутся хаотически, беспорядочно, в любых направлениях. Такое их перемещение обусловлено тепловой энергией. Оно характеризуется различными скоростями и направлениями перемещения каждой частицы в любой момент времени.

Когда к проводнику приложена энергия внешнего поля с напряженностью Е, то на все электроны вместе и каждый в отдельности действует сила, направленная противоположно действующему полю. Она создает строго ориентированное движение электронов, или другим словами - электрический ток.

Вольтамперная характеристика металлов представляет собой прямую линию, укладывающуюся в действие закона Ома для участка и полной цепи.

Кроме чистых металлов электронной проводимостью обладают и другие вещества. К ним относят:

сплавы;

отдельные модификации углерода (графит, уголь).

Все вышеперечисленные вещества, включая металлы, относят к проводникам 1-го рода . У них электропроводность никоим образом не связана с переносом массы вещества за счет прохождения электрического тока, а обусловливается только движением электронов.

Если металлы и сплавы поместить в среду сверхнизких температур, то они переходят в состояние сверхпроводимости.

Проводники с ионной проводимостью (проводники 2-го рода)

К этому классу относятся вещества, у которых электрический ток создается за счет движения зарядов ионами. Они классифицируются как проводники второго рода.

растворы щелочей, кислот солей;

расплавы различных ионных соединений;

различные газы и пары́.

Электрический ток в жидкости

Проводящие электрический ток жидкие среды, в которых происходит электролиз - перенос вещества вместе с зарядами и осаждение его на электродах, принято называть электролитами, а сам процесс - электролизом.

Он происходит под действием внешнего энергетического поля за счет приложения положительного потенциала к электроду-аноду и отрицательного - к катоду.

Ионы внутри жидкостей образуются за счет явления электролитической диссоциации, которая заключается в расщеплении части молекул вещества, обладающих нейтральными свойствами.

Под действием приложенного напряжения к электролиту катионы начинают двигаться строго к катоду, а анионы - к аноду. Таким способом получают химически чистую, без примесей медь, которая выделяется на катоде.

Кроме жидкостей в природе существуют еще твердые электролиты. Их называют суперионными проводниками (супер-иониками), обладающими кристаллической структурой и ионной природой химических связей, обусловливающую высокую электропроводность за счет движения ионов одного типа.

Проводники с дырочной проводимостью

К ним относятся:

германий;

селен;

кремний;

соединения отдельных металлов с теллуром, серой, селеном и некоторыми органическими веществами.

Они получили название полупроводников и относятся к группе №1, то есть не образуют переноса вещества при протекании зарядов. Для увеличения концентрации свободных электронов внутри них необходимо потратить дополнительную энергию на отрыв связанных электронов. Она получила название энергии ионизации.

В составе полупроводника работает электронно-дырочный переход. За счет его полупроводник пропускает ток в одном направлении и блокирует в обратном, когда к нему приложено противоположное внешнее поле.

Структура полупроводника

Проводимость у полупроводников бывает:

1. собственной;

2. примесной.

Первый тип присущ конструкциям, у которых в процессе ионизации атомов своего вещества появляются носители зарядов: дырки и электроны. Их концентрация взаимно уравновешена.

В электричестве выделяют три основных группы материалов – это проводники, полупроводники и диэлектрики. Основным их отличием является возможность проводить ток. В этой статье мы рассмотрим, чем отличаются эти виды материалов и как они ведут себя в электрическом поле.

Что такое проводник

Вещество, в котором присутствуют свободные носители зарядов, называют проводником. Движение свободных носителей называют тепловым. Основной характеристикой проводника является его сопротивление (R) или проводимость (G) – величина обратная сопротивлению.

Говоря простыми словами – проводник проводит ток.

К таким веществам можно отнести металлы, но если говорить о неметаллах то, например, углерод – отличный проводник, нашел применение в скользящих контактах, например, щетки электродвигателя. Влажная почва, растворы солей и кислот в воде, тело человека – тоже проводит ток, но их электропроводность зачастую меньше, чем у меди или алюминия, например.

Металлы являются отличными проводниками, как раз таки благодаря большому числу свободных носителей зарядов в их структуре. Под воздействием электрического поля заряды начинают перемещаться, а также перераспределяться, наблюдается явление электростатической индукции.

Что такое диэлектрик

Диэлектриками называют вещества, которые не проводят ток, или проводят, но очень плохо. В них нет свободных носителей зарядов, потому что связь частиц атома достаточно сильная, для образования свободных носителей, поэтому под воздействием электрического поля тока в диэлектрике не возникает.

Газ, стекло, керамика, фарфор, некоторые смолы, текстолит, карболит, дистиллированная вода, сухая древесина, резина – являются диэлектриками и не проводят электрический ток. В быту диэлектрики встречаются повсеместно, например, из них делаются корпуса электроприборов, электрические выключатели, корпуса вилок, розеток и прочее. В линиях электропередач изоляторы выполняются из диэлектриков.

Однако, при наличии определенных факторов, например повышенный уровень влажности, напряженность электрического поля выше допустимого значения и прочее – приводят к тому, что материал начинает терять свои диэлектрические функции и становится проводником. Иногда вы можете слышать фразы типа «пробой изолятора» — это и есть описанное выше явление.

Если сказать кратко, то основными свойствами диэлектрика в сфере электричества являются электроизоляционные. Именно способность препятствовать протеканию тока защищает человека от электротравматизма и прочих неприятностей. Основной характеристикой диэлектрика является электрическая прочность – величина равная напряжению его пробоя.

Что такое полупроводник

Полупроводник проводит электрический ток, но не так как металлы, а при соблюдении определенных условий – сообщении веществу энергии в нужных количествах. Это связано с тем, что свободных носителей (дырок и электронов) зарядов слишком мало или их вовсе нет, но если приложить какое-то количество энергии – они появятся. Энергия может быть различных форм – электрической, тепловой. Также свободные дырки и электроны в полупроводнике могут возникать под воздействием излучений, например в УФ-спектре.

Где применяются полупроводники? Из них изготавливают транзисторы, тиристоры, диоды, микросхемы, светодиоды и прочее. К таким материалам относят кремний, германий, смеси разных материалов, например арсенид-галия, селен, мышьяк.

Чтобы понять, почему полупроводник проводит электрический ток, но не так как металлы, нужно рассматривать эти материалы с точки зрения зонной теории.

Зонная теория

Зонная теория описывает наличие или отсутствие свободных носителей зарядов, относительно определенных энергетических слоев. Энергетическим уровнем или слоем называют количество энергии электронов (ядер атомов, молекул – простых частиц), их измеряют в величине Электронвольты (ЭВ).

На изображении ниже показаны три вида материалов с их энергетическими уровнями:

Обратите внимание, что у проводника энергетические уровни от валентной зоны до зоны проводимости объединены в неразрывную диаграмму. Зона проводимости и валентная зоны накладываются друг на друга, это называется зоной перекрытия. В зависимости от наличия электрического поля (напряжения), температуры и прочих факторов количество электронов может изменяться. Благодаря вышеописанному, электроны могут передвигаться в проводниках, даже если сообщить им какое-то минимальное количество энергии.

У полупроводника между зоной валентности и зоной проводимости присутствует определенная запрещенная. Ширина запрещенной зоны описывает, какое количество энергии нужно сообщить полупроводнику, чтобы начал протекать ток.

У диэлектрика диаграмма похожа на ту, которая описывает полупроводники, однако отличие лишь в ширине запрещенной зоны – она здесь во много раз большая. Различия обусловлены внутренним строением и вещества.

Мы рассмотрели основные три типа материалов и привели их примеры и особенности. Главным их отличием является способность проводить ток. Поэтому каждый из них нашел свою сферу применения: проводники используются для передачи электроэнергии, диэлектрики – для изоляции токоведущих частей, полупроводники – для электроники. Надеемся, предоставленная информация помогла вам понять, что собой представляют проводники, полупроводники и диэлектрики в электрическом поле, а также в чем их отличие между собой.

Электрический проводник

Электрический провод

Проводник - вещество, проводящее электрический ток. Среди наиболее распространённых твёрдых проводников известны металлы , полуметаллы. Пример проводящих жидкостей - электролиты . Пример проводящих газов - ионизированный газ (плазма). Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.

Проводниками также называют части электрических цепей - соединительные провода и шины.

Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде .

Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты)

См. также

  • Полианилин - полимер с электронной проводимостью

Литература

  • Жан М. Рабаи, Ананта Чандракасан, Боривож Николич 4. Проводник // Цифровые интегральные схемы. Методология проектирования = Digital Integrated Circuits. - 2-ое изд. - М.: «Вильямс» , 2007. - С. 912. - ISBN 0-13-090996-3

Wikimedia Foundation . 2010 .

Смотреть что такое "Электрический проводник" в других словарях:

    электрический проводник - elektros laidininkas statusas T sritis chemija apibrėžtis Medžiaga, laidi elektros srovei. atitikmenys: angl. conductor of electricity; electric conductor; electrical conductor rus. электрический проводник … Chemijos terminų aiškinamasis žodynas

    электрический проводник - elektros laidininkas statusas T sritis fizika atitikmenys: angl. conductor of electricity vok. elektrischer Leiter, m rus. электрический проводник, m pranc. conducteur électrique, m … Fizikos terminų žodynas

    Заряд количество электричества, содержащееся в данномтеле. Электрический ток. Если погрузить в проводящую жидкость, напр.,в раствор серной кислоты, два разнородных металла, напр., Zn и Сu, исоединить эти металлы между собой металлической… … Энциклопедия Брокгауза и Ефрона

    Электрический контакт поверхность соприкосновения проводящих электрический ток материалов, обладающая электропроводностью, или приспособление, обеспечивающее такое соприкосновение (соединение). В зависимости от природы соприкасающихся… … Википедия

    проводник - (1) Вещество, основным электрическим свойством которого является электропроводность. [ГОСТ Р 52002 2003] проводник (2) Всё то, что используется (предназначается) для проведения электрического тока: провод; кабель; шина; шинопровод; жила провода… …

    проводник питающей линии - Параллельные тексты EN RU Unless a plug is provided with the machine for the connection to the supply, it is recommended that the supply conductors are terminated at the supply disconnecting device. Если проводники питающей… … Справочник технического переводчика

    электрический провод - провод Кабельное изделие, содержащее одну или несколько скрученных проволок или одну или более изолированных жил, поверх оторых в зависимости от условий прокладки и эксплуатации может иметься легкая неметаллическая оболочка, обмотка и (или)… … Справочник технического переводчика

    ПРОВОДНИК, вещество или предмет, по которым легко проходят свободные ЭЛЕКТРОНЫ, то есть, создается поток тепловой энергии или заряженных частиц. У проводников низкое электрическое СОПРОТИВЛЕНИЕ. Самыми лучшими проводниками являются металлы,… … Научно-технический энциклопедический словарь

    Символы обозначения предохранителя У этого термина существуют и другие значения, см. Предохранитель. Электрический предохранитель электрический апп … Википедия

    Основная статья: Электрическая машина Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения Электрический двигатель … Википедия


Из физики известно, что электрический ток – это направленное движение электрически заряженных частиц. Разные вещества проводят электрический ток по-разному. По способности передавать электрические заряды вещества делятся на ПРОВОДНИКИ и НЕПРОВОДНИКИ электричества.

Проводниками называют тела, через которые электрические заряды могут проходить от заряженного тела к незаряженному, в проводниках имеется очень много свободных заряженных частиц. Хорошие проводники электричества – это металлы, почва, вода с растворенными в ней солями, кислотами или щелочами, графит и некоторые виды органических веществ. Тело человека также проводит электричество. Это можно показать на опыте с электроскопом. Зарядим электроскоп с помощью эбонитовой или стеклянной палочки, стрелка отклонится Затем дотронемся до заряженного электроскопа рукой. Стрелка тотчас вернётся в исходное положение – к нулю. Заряд с электроскопа уходит в наше тело. В данном опыте с небольшим зарядом это не опасно, но ощутимо «щёлкает» по пальцам. А большие заряды и токи опасны для жизни и здоровья.

Из металлов лучшие проводники электричества – серебро, медь, алюминий. Даже в обычной водопроводной воде растворено столько всевозможных солей, что она является весьма хорошим проводником, и об этом нельзя забывать, работая с электрооборудованием в условиях повышенной влажности иначе можно получить весьма ощутимый удар током, это опасно.

Проходя через живой организм электрический ток производит разные действия: термическое – ожоги определённых участков тела, нагрев кровеносных сосудов, крови, нервов; электролитическое (или химическое) – разложение крови и других органических жидкостей; биологическое – раздражение и возбуждение живых тканей организма, что сопровождается непроизвольными судорожными сокращением мышц, в том числе мышц сердца и лёгких. В результате всего этого могут возникнуть различные нарушения в организме вплоть до полной остановки работы сердца и лёгких.

Непроводниками называют такие тела, через которые электрические заряды не могут переходить от заряженного тела к незаряженному, так как в диэлектриках очень мало свободных заряженных частиц. Непроводниками электричества, или диэлектриками, являются эбонит, янтарь, фарфор, резина, различные пластмассы, шелк, капрон, масла, воздух (газы), стекло, плексиглас, сухое дерево и бумага. Изготовленные из диэлектриков тела называются ИЗОЛЯТОРАМИ (от итальянского слова ИЗОЛЯРО – уединять).

Проводники служат для передачи на расстояние электрической энергии (электрического тока), именно из них, в основном, изготавливаются высоковольтные электрические кабели, бытовая электропроводка. Изоляторы используются для обособления, изолирования проводников и обеспечения безопасности людей при работе с электроприборами. Для передачи электроэнергии необходимо собрать замкнутую электрическую цепь, в которую входят источник электрической энергии, проводники, по которым от этого источника электрический ток поступает к потребителям электрической энергии, и сами потребители.

При проведении опытов по электричеству всегда используются и проводники, и диэлектрики. Например, используя два электроскопа, мы зарядили один из них отрицательным зарядом, полученным на эбонитовой палочке при её трении о шерсть. При этом стрелка электроскопа отклонилась, показывая наличие заряда на нём. Если затем взять металлический стержень на изолирующей пластмассовой рукоятке и соединить заряженный электроскоп с незаряженным, то по проводящему ток стержню заряды частично перейдут на второй электроскоп, а вот разрядки электроскопа, как в случае его касания голой рукой, не происходит, так как рукоятка не проводит ток к руке человека. Именно поэтому рукоятки различных инструментов, например отвёрток, плоскогубцев, кусачек, делают из непроводящих материалов.

Основные меры защиты от поражения электрическим током:

Обеспечение недоступности токоведущих частей, находящихся под напряжением, для случайного прикосновения,

Защитное заземление, защитное отключение электроприборов;

Использование по возможности низких напряжений, особенно во влажных помещениях;

Применение двойной изоляции.

Знание и соблюдение правил техники безопасности при работе с электрическим током и различными электроприборами обязательно и для взрослых, и для детей. Чтобы учащимся младших классов было легче запомнить эти правила, можно использовать различные запоминающиеся плакаты, стихи. Примеры я подобрал из различных источников, кое-что придумал сам и оформил как советы по электробезопасности в приложении 1 к моей работе. В приложении 2 приведены меры первой помощи при поражении электрическим током.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЭЛЕКТРОПРОВОДНОСТИ РАЗЛИЧНЫХ ВЕЩЕСТВ

Электропроводность веществ можно испытать с помощью специального прибора, но мы использовали обычную электрическую цепь. Главный элемент любой электрической цепи – источник электрического тока. Без него электрическая цепь не будет работать. Когда вы включаете в розетку вилку питающего шнура телевизора, для электрического утюга, чайников и других электроприборов – потребителей электрической энергии, то вы, по сути, подключаетесь к электростанции – производителю этой электроэнергии.

Для того чтобы проверить электропроводность твердых веществ, я собрал электрическую цепь, в которую входили: источник тока, ключ для замыкания и размыкания цепи, лампа для того, чтобы проверить, есть ток или нет, и контакты для подключения вещества в цепь.

Когда контакты помещают в вещество, становится ясно, проводит ли это вещество ток. Если вещество проводит электрический ток, цепь замыкается, и лампочка загорается. Если вещество неэлектропроводно, цепь остается разомкнутой, и лампочка не горит.

Опыт 1. Исследование твердых веществ.

В таблице 1 указаны десять твердых веществ, которые мы исследовали на электропроводность. В результате проверки выяснилось,

Таблица 1.

алюминий + пластмасса –

сталь + стекло –

латунь + орг. стекло –

медь + магнит –

древесина – резина – что алюминий, сталь, латунь, медь проводят электрический ток, а древесина, пластмасса, стекло, оргстекло, магнит и резина не проводят электрический ток.

Опыт 2. Исследование жидких веществ.

Для того, чтобы проверить электропроводность жидких веществ, мы изменили электрическую цепь (рис. 5). Кроме источника тока и ключа в цепь добавили амперметр вместо лампы и электролитический стакан вместо контактов.

Таблица 2.

чистая вода

раствор поваренной соли +

раствор медного купороса +

раствор морской соли +

раствор сахара –

В электролитический стакан мы помещали разные жидкости. Если у амперметра при замыкании цепи стрелка отклонялась, значит, данная жидкость проводит электрический ток.

В результате нашего эксперимента выяснилось, что раствор поваренной соли, медного купороса и морской соли проводит электрический ток, а чистая вода и сахарный сироп – нет.

ЗАКЛЮЧЕНИЕ

Проведённые опыты подтвердили, что некоторые вещества хорошо проводят ток, это различные металлы и растворы солей. Другие твёрдые и жидкие вещества являются диэлектриками, т. е. непроводниками, это пластмассы или резина, из которых делают изоляцию электропроводов и корпуса электрических приборов, и многие другие вещества.

Моя работа достаточно важна для меня и других школьников, так как для безопасной работы с электрическими приборами дома и в школе нужно знать, как поступать в некоторых жизненных ситуациях. Например, человека ударило током от оборванного провода. Ни в коем случае нельзя трогать этот провод и человека голыми руками. Нужно отодвинуть провод с помощью какого-то не проводящего ток предмета, например сухой деревянной палки.

Чтобы научить учеников младших классов правилам электробезопасности, можно использовать подготовленные мной советы.


Top