Дифференцирование уравнения. Порядок дифференциального уравнения и его решения, задача коши

Или уже решены относительно производной , или их можно решить относительно производной .

Общее решение дифференциальных уравнений типа на интервале X , который задан, можно найти, взяв интеграл обоих частей этого равенства.

Получим .

Если посмотреть на свойства неопределенного интеграла, то найдем искомое общее решение:

y = F(x) + C ,

где F(x) - одна из первообразных функции f(x) на промежутке X , а С - произвольная постоянная.

Обратите внимание, что в большинстве задач интервал X не указывают. Это значит, что решение нужно находить для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Если нужно вычислить частное решение дифференциального уравнения , которое удовлетворяет начальному условию y(x 0) = y 0 , то после вычисления общего интеграла y = F(x) + C , еще необходимо определить значение постоянной C = C 0 , используя начальное условие. Т.е., константу C = C 0 определяют из уравнения F(x 0) + C = y 0 , и искомое частное решение дифференциального уравнения примет вид:

y = F(x) + C 0 .

Рассмотрим пример:

Найдем общее решение дифференциального уравнения , проверим правильность результата. Найдем частное решение этого уравнения, которое удовлетворяло бы начальному условию .

Решение:

После того, как мы проинтегрировали заданное дифференциальное уравнение, получаем:

.

Возьмем этот интеграл методом интегрирования по частям:


Т.о., является общим решением дифференциального уравнения.

Чтобы убедиться в правильности результата, сделаем проверку. Для этого подставляем решение, которое мы нашли, в заданное уравнение:


.

То есть, при исходное уравнение превращается в тождество:

поэтому общее решение дифференциального уравнения определили верно.

Решение, которое мы нашли, является общим решением дифференциального уравнения для каждого действительного значения аргумента x .

Осталось вычислить частное решение ОДУ, которое удовлетворяло бы начальному условию . Другими словами, необходимо вычислить значение константы С , при котором будет верно равенство:

.

.

Тогда, подставляя С = 2 в общее решение ОДУ, получаем частное решение дифференциального уравнения, которое удовлетворяет первоначальному условию:

.

Обыкновенное дифференциальное уравнение можно решить относительно производной, разделив 2 части равенства на f(x) . Это преобразование будет равнозначным, если f(x) не превращается в нуль ни при каких x из интервала интегрирования дифференциального уравнения X .

Вероятны ситуации, когда при некоторых значениях аргумента x X функции f(x) и g(x) одновременно превращаются в нуль. Для подобных значений x общим решением дифференциального уравнения будет всякая функция y , которая определена в них, т.к. .

Если для некоторых значений аргумента x X выполняется условие , значит, в этом случае у ОДУ решений нет.

Для всех других x из интервала X общее решение дифференциального уравнения определяется из преобразованного уравнения .

Разберем на примерах:

Пример 1.

Найдем общее решение ОДУ: .

Решение.

Из свойств основных элементарных функций ясно, что функция натурального логарифма определена для неотрицательных значений аргумента, поэтому областью определения выражения ln(x+3) есть интервал x > -3 . Значит, заданное дифференциальное уравнение имеет смысл для x > -3 . При этих значениях аргумента выражение x + 3 не обращается в нуль, поэтому можно решить ОДУ относительно производной, разделив 2 части на х + 3 .

Получаем .

Далее проинтегрируем полученное дифференциальное уравнение, решенное относительно производной: . Для взятия этого интеграла пользуемся методом подведения под знак дифференциала.

I. Обыкновенные дифференциальные уравнения

1.1. Основные понятия и определения

Дифференциальным уравнением называется уравнение, связывающее между собой независимую переменную x , искомую функцию y и её производные или дифференциалы.

Символически дифференциальное уравнение записывается так:

F(x,y,y")=0, F(x,y,y")=0, F(x,y,y",y",.., y (n))=0

Дифференциальное уравнение называется обыкновенным, если искомая функция зависит от одного независимого переменного.

Решением дифференциального уравнения называется такая функция , которая обращает это уравнение в тождество.

Порядком дифференциального уравнения называется порядок старшей производной, входящей в это уравнение

Примеры.

1. Рассмотрим дифференциальное уравнение первого порядка

Решением этого уравнения является функция y = 5 ln x. Действительно, , подставляя y" в уравнение, получим – тождество.

А это и значит, что функция y = 5 ln x– есть решение этого дифференциального уравнения.

2. Рассмотрим дифференциальное уравнение второго порядка y" - 5y" +6y = 0 . Функция – решение этого уравнения.

Действительно, .

Подставляя эти выражения в уравнение, получим: , – тождество.

А это и значит, что функция – есть решение этого дифференциального уравнения.

Интегрированием дифференциальных уравнений называется процесс нахождения решений дифференциальных уравнений.

Общим решением дифференциального уравнения называется функция вида ,в которую входит столько независимых произвольных постоянных, каков порядок уравнения.

Частным решением дифференциального уравнения называется решение, полученное из общего решения при различных числовых значениях произвольных постоянных. Значения произвольных постоянных находится при определённых начальных значениях аргумента и функции.

График частного решения дифференциального уравнения называется интегральной кривой .

Примеры

1.Найти частное решение дифференциального уравнения первого порядка

xdx + ydy = 0 , если y = 4 при x = 3.

Решение. Интегрируя обе части уравнения, получим

Замечание. Произвольную постоянную С, полученную в результате интегрирования, можно представлять в любой форме, удобной для дальнейших преобразований. В данном случае, с учётом канонического уравнения окружности произвольную постоянную С удобно представить в виде .

- общее решение дифференциального уравнения.

Частное решение уравнения, удовлетворяющее начальным условиям y = 4 при x = 3 находится из общего подстановкой начальных условий в общее решение: 3 2 + 4 2 = C 2 ; C=5.

Подставляя С=5 в общее решение, получим x 2 +y 2 = 5 2 .

Это есть частное решение дифференциального уравнения, полученное из общего решения при заданных начальных условиях.

2. Найти общее решение дифференциального уравнения

Решением этого уравнения является всякая функция вида , где С – произвольная постоянная. Действительно, подставляя в уравнения , получим: , .

Следовательно, данное дифференциальное уравнение имеет бесконечное множество решений, так как при различных значениях постоянной С равенство определяет различные решения уравнения .

Например, непосредственной подстановкой можно убедиться, что функции являются решениями уравнения .

Задача, в которой требуется найти частное решение уравнения y" = f(x,y) удовлетворяющее начальному условию y(x 0) = y 0 , называется задачей Коши.

Решение уравнения y" = f(x,y) , удовлетворяющее начальному условию, y(x 0) = y 0 , называется решением задачи Коши.

Решение задачи Коши имеет простой геометрический смысл. Действительно, согласно данным определениям, решить задачу Коши y" = f(x,y) при условии y(x 0) = y 0 , означает найти интегральную кривую уравнения y" = f(x,y) которая проходит через заданную точку M 0 (x 0 ,y 0 ).

II. Дифференциальные уравнения первого порядка

2.1. Основные понятия

Дифференциальным уравнением первого порядка называется уравнение вида F(x,y,y") = 0.

В дифференциальное уравнение первого порядка входит первая производная и не входят производные более высокого порядка.

Уравнение y" = f(x,y) называется уравнением первого порядка, разрешённым относительно производной.

Общим решением дифференциального уравнения первого порядка называется функция вида , которая содержит одну произвольную постоянную.

Пример. Рассмотрим дифференциальное уравнение первого порядка .

Решением этого уравнения является функция .

Действительно, заменив в данном уравнении, его значением, получим

то есть 3x=3x

Следовательно, функция является общим решением уравнения при любом постоянном С.

Найти частное решение данного уравнения, удовлетворяющее начальному условию y(1)=1 Подставляя начальные условия x = 1, y =1 в общее решение уравнения , получим откуда C = 0 .

Таким образом, частное решение получим из общего подставив в это уравнение, полученное значение C = 0 – частное решение.

2.2. Дифференциальные уравнения с разделяющимися переменными

Дифференциальным уравнением с разделяющимися переменными называется уравнение вида: y"=f(x)g(y) или через дифференциалы , где f(x) и g(y) – заданные функции.

Для тех y , для которых , уравнение y"=f(x)g(y) равносильно уравнению, в котором переменная y присутствует лишь в левой части, а переменная x- лишь в правой части. Говорят, «в уравнении y"=f(x)g(y разделим переменные».

Уравнение вида называется уравнением с разделёнными переменными.

Проинтегрировав обе части уравнения по x , получим G(y) = F(x) + C – общее решение уравнения, где G(y) и F(x) – некоторые первообразные соответственно функций и f(x) , C произвольная постоянная.

Алгоритм решения дифференциального уравнения первого порядка с разделяющимися переменными

Пример 1

Решить уравнение y" = xy

Решение. Производную функции y" заменим на

разделим переменные

проинтегрируем обе части равенства:

Пример 2

2yy" = 1- 3x 2 , если y 0 = 3 при x 0 = 1

Это-уравнение с разделенными переменными. Представим его в дифференциалах. Для этого перепишем данное уравнение в виде Отсюда

Интегрируя обе части последнего равенства, найдем

Подставив начальные значения x 0 = 1, y 0 = 3 найдем С 9=1-1+C , т.е. С = 9.

Следовательно, искомый частный интеграл будет или

Пример 3

Составить уравнение кривой, проходящей через точку M(2;-3) и имеющей касательную с угловым коэффициентом

Решение. Согласно условию

Это уравнение с разделяющимися переменными. Разделив переменные, получим:

Проинтегрировав обе части уравнения, получим:

Используя начальные условия, x = 2 и y = - 3 найдем C :

Следовательно, искомое уравнение имеет вид

2.3. Линейные дифференциальные уравнения первого порядка

Линейным дифференциальным уравнением первого порядка называется уравнение вида y" = f(x)y + g(x)

где f(x) и g(x) - некоторые заданные функции.

Если g(x)=0 то линейное дифференциальное уравнение называется однородным и имеет вид: y" = f(x)y

Если то уравнение y" = f(x)y + g(x) называется неоднородным.

Общее решение линейного однородного дифференциального уравнения y" = f(x)y задается формулой: где С – произвольная постоянная.

В частности, если С =0, то решением является y = 0 Если линейное однородное уравнение имеет вид y" = ky где k - некоторая постоянная, то его общее решение имеет вид: .

Общее решение линейного неоднородного дифференциального уравнения y" = f(x)y + g(x) задается формулой ,

т.е. равно сумме общего решения соответствующего линейного однородного уравнения и частного решения данного уравнения.

Для линейного неоднородного уравнения вида y" = kx + b ,

где k и b - некоторые числа и частным решением будет являться постоянная функция . Поэтому общее решение имеет вид .

Пример . Решить уравнение y" + 2y +3 = 0

Решение. Представим уравнение в виде y" = -2y - 3 где k = -2, b= -3 Общее решение задается формулой .

Следовательно, где С – произвольная постоянная.

2.4. Решение линейных дифференциальных уравнений первого порядка методом Бернулли

Нахождение общего решения линейного дифференциального уравнения первого порядка y" = f(x)y + g(x) сводится к решению двух дифференциальных уравнений с разделенными переменными с помощью подстановки y=uv , где u и v - неизвестные функции от x . Этот метод решения называется методом Бернулли.

Алгоритм решения линейного дифференциального уравнения первого порядка

y" = f(x)y + g(x)

1. Ввести подстановку y=uv .

2. Продифференцировать это равенство y" = u"v + uv"

3. Подставить y и y" в данное уравнение: u"v + uv" = f(x)uv + g(x) или u"v + uv" + f(x)uv = g(x) .

4. Сгруппировать члены уравнения так, чтобы u вынести за скобки:

5. Из скобки, приравняв ее к нулю, найти функцию

Это уравнение с разделяющимися переменными:

Разделим переменные и получим:

Откуда . .

6. Подставить полученное значение v в уравнение (из п.4):

и найти функцию Это уравнение с разделяющимися переменными:

7. Записать общее решение в виде: , т.е. .

Пример 1

Найти частное решение уравнения y" = -2y +3 = 0 если y =1 при x = 0

Решение. Решим его с помощью подстановки y=uv, .y" = u"v + uv"

Подставляя y и y" в данное уравнение, получим

Сгруппировав второе и третье слагаемое левой части уравнения, вынесем общий множитель u за скобки

Выражение в скобках приравниваем к нулю и, решив полученное уравнение, найдем функцию v = v(x)

Получили уравнение с разделенными переменными. Проинтегрируем обе части этого уравнения: Найдем функцию v :

Подставим полученное значение v в уравнение Получим:

Это уравнение с разделенными переменными. Проинтегрируем обе части уравнения: Найдем функцию u = u(x,c) Найдем общее решение: Найдем частное решение уравнения, удовлетворяющее начальным условиям y = 1 при x = 0 :

III. Дифференциальные уравнения высших порядков

3.1. Основные понятия и определения

Дифференциальным уравнением второго порядка называется уравнение, содержащее производные не выше второго порядка. В общем случае дифференциальное уравнение второго порядка записывается в виде: F(x,y,y",y") = 0

Общим решением дифференциального уравнения второго порядка называется функция вида , в которую входят две произвольные постоянные C 1 и C 2 .

Частным решением дифференциального уравнения второго порядка называется решение, полученное из общего при некоторых значениях произвольных постоянных C 1 и C 2 .

3.2. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение вида y" + py" +qy = 0 , где p и q - постоянные величины.

Алгоритм решения однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

1. Записать дифференциальное уравнение в виде: y" + py" +qy = 0 .

2. Составить его характеристическое уравнение, обозначив y" через r 2 , y" через r , y через 1:r 2 + pr +q = 0

Часто одно лишь упоминание дифференциальных уравнений вызывает у студентов неприятное чувство. Почему так происходит? Чаще всего потому, что при изучении основ материала возникает пробел в знаниях, из-за которого дальнейшее изучение дифуров становиться просто пыткой. Ничего не понятно, что делать, как решать, с чего начать?

Однако мы постараемся вам показать, что дифуры – это не так сложно, как кажется.

Основные понятия теории дифференциальных уравнений

Со школы нам известны простейшие уравнения, в которых нужно найти неизвестную x. По сути дифференциальные уравнения лишь чуточку отличаются от них – вместо переменной х в них нужно найти функцию y(х) , которая обратит уравнение в тождество.

Дифференциальные уравнения имеют огромное прикладное значение. Это не абстрактная математика, которая не имеет отношения к окружающему нас миру. С помощью дифференциальных уравнений описываются многие реальные природные процессы. Например, колебания струны, движение гармонического осциллятора, посредством дифференциальных уравнений в задачах механики находят скорость и ускорение тела. Также ДУ находят широкое применение в биологии, химии, экономике и многих других науках.

Дифференциальное уравнение (ДУ ) – это уравнение, содержащее производные функции y(х), саму функцию, независимые переменные и иные параметры в различных комбинациях.

Существует множество видов дифференциальных уравнений: обыкновенные дифференциальные уравнения, линейные и нелинейные, однородные и неоднородные, дифференциальные уравнения первого и высших порядков, дифуры в частных производных и так далее.

Решением дифференциального уравнения является функция, которая обращает его в тождество. Существуют общие и частные решения ДУ.

Общим решением ДУ является общее множество решений, обращающих уравнение в тождество. Частным решением дифференциального уравнения называется решение, удовлетворяющее дополнительным условиям, заданным изначально.

Порядок дифференциального уравнения определяется наивысшим порядком производных, входящих в него.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения – это уравнения, содержащие одну независимую переменную.

Рассмотрим простейшее обыкновенное дифференциальное уравнение первого порядка. Оно имеет вид:

Решить такое уравнение можно, просто проинтегрировав его правую часть.

Примеры таких уравнений:

Уравнения с разделяющимися переменными

В общем виде этот тип уравнений выглядит так:

Приведем пример:

Решая такое уравнение, нужно разделить переменные, приведя его к виду:

После этого останется проинтегрировать обе части и получить решение.

Линейные дифференциальные уравнения первого порядка

Такие уравнения имеют вид:

Здесь p(x) и q(x) – некоторые функции независимой переменной, а y=y(x) – искомая функция. Приведем пример такого уравнения:

Решая такое уравнение, чаще всего используют метод вариации произвольной постоянной либо представляют искомую функцию в виде произведения двух других функций y(x)=u(x)v(x).

Для решения таких уравнений необходима определенная подготовка и взять их “с наскока” будет довольно сложно.

Пример решения ДУ с разделяющимися переменными

Вот мы и рассмотрели простейшие типы ДУ. Теперь разберем решение одного из них. Пусть это будет уравнение с разделяющимися переменными.

Сначала перепишем производную в более привычном виде:

Затем разделим переменные, то есть в одной части уравнения соберем все "игреки", а в другой – "иксы":

Теперь осталось проинтегрировать обе части:

Интегрируем и получаем общее решение данного уравнения:

Конечно, решение дифференциальных уравнений – своего рода искусство. Нужно уметь понимать, к какому типу относится уравнение, а также научиться видеть, какие преобразования нужно с ним совершить, чтобы привести к тому или иному виду, не говоря уже просто об умении дифференцировать и интегрировать. И чтобы преуспеть в решении ДУ, нужна практика (как и во всем). А если у Вас в данный момент нет времени разбираться с тем, как решаются дифференциальные уравнения или задача Коши встала как кость в горле или вы не знаете, обратитесь к нашим авторам. В сжатые сроки мы предоставим Вам готовое и подробное решение, разобраться в подробностях которого Вы сможете в любое удобное для Вас время. А пока предлагаем посмотреть видео на тему "Как решать дифференциальные уравнения":

Дифференциальное уравнение (ДУ) - это уравнение ,
где - независимые переменные, y - функция и - частные производные.

Обыкновенное дифференциальное уравнение - это дифференциальное уравнение, которое имеет только одну независимую переменную, .

Дифференциальное уравнение в частных производных - это дифференциальное уравнение, которое имеет две и более независимых переменных.

Слова “обыкновенные“ и "в частных производных" могут опускаться, если ясно, какое уравнение рассматривается. В дальнейшем рассматриваются обыкновенные дифференциальные уравнения.

Порядок дифференциального уравнения - это порядок старшей производной.

Вот пример уравнения первого порядка:

Вот пример уравнения четвертого порядка:

Иногда дифференциальное уравнение первого порядка записывается через дифференциалы:

В этом случае переменные x и y являются равноправными. То есть независимой переменной может быть как x так и y . В первом случае y является функцией от x . Во втором случае x является функцией от y . Если необходимо, мы можем привести это уравнение к виду, в котором явно входит производная y′ .
Разделив это уравнение на dx , мы получим:
.
Поскольку и , то отсюда следует, что
.

Решение дифференциальных уравнений

Производные от элементарных функций выражаются через элементарные функции. Интегралы от элементарных функций часто не выражаются через элементарные функции. С дифференциальными уравнениями дело обстоит еще хуже. В результате решения можно получить:

  • явную зависимость функции от переменной;

    Решение дифференциального уравнения - это функция y = u(x) , которая определена, n раз дифференцируема, и .

  • неявную зависимость в виде уравнения типа Φ(x, y) = 0 или системы уравнений;

    Интеграл дифференциального уравнения - это решение дифференциального уравнения, которое имеет неявный вид.

  • зависимость, выраженную через элементарные функции и интегралы от них;

    Решение дифференциального уравнения в квадратурах - это нахождение решения в виде комбинации элементарных функций и интегралов от них.

  • решение может не выражается через элементарные функции.

Поскольку решение дифференциальных уравнений сводится к вычислению интегралов, то в состав решения входит набор постоянных C 1 , C 2 , C 3 , ... C n . Количество постоянных равно порядку уравнения.Частный интеграл дифференциального уравнения - это общий интеграл при заданных значениях постоянных C 1 , C 2 , C 3 , ... , C n .


Использованная литература:
В.В. Степанов, Курс дифференциальных уравнений, «ЛКИ», 2015.
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Обыкновенным дифференциальным уравнением называется уравнение, связывающее независимую переменную, неизвестную функцию этой переменной и её производные (или дифференциалы) различных порядков.

Порядком дифференциального уравнения называется порядок старшей производной, содержащейся в нём.

Кроме обыкновенных изучаются также дифференциальные уравнения с частными производными . Это уравнения, связывающие независимые переменные , неизвестную функцию этих переменных и её частные производные по тем же переменным. Но мы будем рассматривать только обыкновенные дифференциальные уравнения и поэтому будем для краткости опускать слово "обыкновенные".

Примеры дифференциальных уравнений:

(1) ;

(3) ;

(4) ;

Уравнение (1) - четвёртого порядка, уравнение (2) - третьего порядка, уравнения (3) и (4) - второго порядка, уравнение (5) - первого порядка.

Дифференциальное уравнение n -го порядка не обязательно должно содержать явно функцию, все её производные от первого до n -го порядка и независимую переменную. В нём могут не содержаться явно производные некоторых порядков, функция, независимая переменная.

Например, в уравнении (1) явно нет производных третьего и второго порядков, а также функции; в уравнении (2) - производной второго порядка и функции; в уравнении (4) - независимой переменной; в уравнении (5) - функции. Только в уравнении (3) содержатся явно все производные, функция и независимая переменная.

Решением дифференциального уравнения называется всякая функция y = f(x) , при подстановке которой в уравнение оно обращается в тождество.

Процесс нахождения решения дифференциального уравнения называется его интегрированием .

Пример 1. Найти решение дифференциального уравнения .

Решение. Запишем данное уравнение в виде . Решение состоит в нахождении функции по её производной. Изначальная функция, как известно из интегрального исчисления , есть первообразная для , т. е.

Это и есть решение данного дифференциального уравнения . Меняя в нём C , будем получать различные решения. Мы выяснили, что существует бесконечное множество решений дифференциального уравнения первого порядка.

Общим решением дифференциального уравнения n -го порядка называется его решение, выраженное явно относительно неизвестной функции и содержащее n независимых произвольных постоянных, т. е.

Решение дифференциального уравнения в примере 1 является общим.

Частным решением дифференциального уравнения называется такое его решение, в котором произвольным постоянным придаются конкретные числовые значения.

Пример 2. Найти общее решение дифференциального уравнения и частное решение при .

Решение. Проинтегрируем обе части уравнения такое число раз, которому равен порядок дифференциального уравнения.

,

.

В результате мы получили общее решение -

данного дифференциального уравнения третьего порядка.

Теперь найдём частное решение при указанных условиях. Для этого подставим вместо произвольных коэффициентов их значения и получим

.

Если кроме дифференциального уравнения задано начальное условие в виде , то такая задача называется задачей Коши . В общее решение уравнения подставляют значения и и находят значение произвольной постоянной C , а затем частное решение уравнения при найденном значении C . Это и есть решение задачи Коши.

Пример 3. Решить задачу Коши для дифференциального уравнения из примера 1 при условии .

Решение. Подставим в общее решение значения из начального условия y = 3, x = 1. Получаем

Записываем решение задачи Коши для данного дифференциального уравнения первого порядка:

При решении дифференциальных уравнений, даже самых простых, требуются хорошие навыки интегрирования и взятия производных , в том числе сложных функций . Это видно на следующем примере.

Пример 4. Найти общее решение дифференциального уравнения .

Решение. Уравнение записано в такой форме, что можно сразу же интегрировать обе его части.

.

Применяем метод интегрирования заменой переменной (подстановкой) . Пусть , тогда .

Требуется взять dx и теперь - внимание - делаем это по правилам дифференцирования сложной функции , так как x и есть сложная функция ("яблоко" - извлечение квадратного корня или, что то же самое - возведение в степень "одна вторая", а "фарш" - самое выражение под корнем):

Находим интеграл:

Возвращаясь к переменной x , получаем:

.

Это и есть общее решение данного дифференциального уравнения первой степени.

Не только навыки из предыдущих разделов высшей математики потребуются в решении дифференциальных уравнений, но и навыки из элементарной, то есть школьной математики. Как уже говорилось, в дифференциальном уравнении любого порядка может и не быть независимой переменной, то есть, переменной x . Помогут решить эту проблему не забытые (впрочем, у кого как) со школьной скамьи знания о пропорции. Таков следующий пример.


Top