Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Дифференциальные уравнения 2-го порядка

§1. Методы понижения порядка уравнения.

Дифференциальное уравнение 2-го порядка имеет вид:

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="119" height="25 src="> (или Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциального уравнения 2-го порядка). Задача Коши для дифференциального уравнения 2-го порядка (1..gif" width="85" height="25 src=">.gif" width="85" height="25 src=">.gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src=">..gif" width="39" height="25 src=">.gif" width="265" height="28 src=">.

Таким образом, уравнение 2-го порядка https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="118" height="25 src=">.gif" width="117" height="25 src=">.gif" width="34" height="25 src=">. Решая его, получаем общий интеграл исходного дифференциального уравнения, зависящий от двух произвольных постоянных: https://pandia.ru/text/78/516/images/image020_23.gif" width="95" height="25 src=">.gif" width="76" height="25 src=">.

Решение.

Так как в исходном уравнении в явном виде отсутствует аргумент https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">.gif" width="35" height="25 src=">..gif" width="35" height="25 src=">.gif" width="82" height="38 src="> ..gif" width="99" height="38 src=">.

Так как при https://pandia.ru/text/78/516/images/image029_18.gif" width="85" height="25 src=">.gif" width="42" height="38 src=">.gif" width="34" height="25 src=">.gif" width="68" height="35 src=">..gif" height="25 src=">.

Пусть дифференциальное уравнение 2-го порядка имеет вид: https://pandia.ru/text/78/516/images/image011_39.gif" height="25 src=">..gif" width="161" height="25 src=">.gif" width="34" height="25 src=">.gif" width="33" height="25 src=">..gif" width="225" height="25 src=">..gif" width="150" height="25 src=">.

Пример 2. Найти общее решение уравнения: https://pandia.ru/text/78/516/images/image015_28.gif" width="34" height="25 src=">.gif" width="107" height="25 src=">..gif" width="100" height="27 src=">.gif" width="130" height="37 src=">.gif" width="34" height="25 src=">.gif" width="183" height="36 src=">.

3. Порядок степени понижается, если удается преобразовать его к такому виду, что обе части уравнения становятся полными производными по https://pandia.ru/text/78/516/images/image052_13.gif" width="92" height="25 src=">..gif" width="98" height="48 src=">.gif" width="138" height="25 src=">.gif" width="282" height="25 src=">, (2.1)

где https://pandia.ru/text/78/516/images/image060_12.gif" width="42" height="25 src=">.gif" width="42" height="25 src="> – заданные функции, непрерывные на том промежутке, на котором ищется решение. Предполагая, что a0(x) ≠ 0, поделим (2..gif" width="215" height="25 src="> (2.2)

Примем без доказательства, что (2..gif" width="82" height="25 src=">.gif" width="38" height="25 src=">.gif" width="65" height="25 src=">, то уравнение (2.2) называется однородным, и уравнение (2.2) называется неоднородным в противном случае.

Рассмотрим свойства решений лоду 2-го порядка.

Определение. Линейной комбинацией функций https://pandia.ru/text/78/516/images/image071_10.gif" width="93" height="25 src=">.gif" width="42" height="25 src=">.gif" width="195" height="25 src=">, (2.3)

то их линейная комбинация https://pandia.ru/text/78/516/images/image076_10.gif" width="182" height="25 src="> в (2.3) и покажем, что в результате получается тождество:

https://pandia.ru/text/78/516/images/image078_10.gif" width="368" height="25 src=">.

Поскольку функции https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> являются решениями уравнения (2.3), то каждая из скобок в последнем уравнении тождественно равна нулю, что и требовалось доказать.

Следствие 1. Из доказанной теоремы вытекает при https://pandia.ru/text/78/516/images/image080_10.gif" width="77" height="25 src="> – решение уравнения (2..gif" width="97" height="25 src=">.gif" width="165" height="25 src="> называется линейно независимой на некотором промежутке, если ни одна из этих функций не представляется в виде линейной комбинации всех остальных.

В случае двух функций https://pandia.ru/text/78/516/images/image085_11.gif" width="119" height="25 src=">, т. е..gif" width="77" height="47 src=">.gif" width="187" height="43 src=">.gif" width="42" height="25 src=">. Таким образом, определитель Вронского для двух линейно независимых функций не может быть тождественно равен нулю.

Пусть https://pandia.ru/text/78/516/images/image091_10.gif" width="46" height="25 src=">.gif" width="42" height="25 src=">.gif" width="605" height="50">..gif" width="18" height="25 src="> удовлетворяют уравнению (2..gif" width="42" height="25 src="> – решение уравнения (3.1)..gif" width="87" height="28 src=">..gif" width="182" height="34 src=">..gif" width="162" height="42 src=">.gif" width="51" height="25 src="> получается тождество. Таким образом,

https://pandia.ru/text/78/516/images/image107_7.gif" width="18" height="25 src=">, в которой определитель для линейно независимых решений уравнения (2..gif" width="42" height="25 src=">.gif" height="25 src="> оба множителя в правой части формулы (3.2) отличны от нуля.

§4. Структура общего решения лоду 2-го порядка.

Теорема. Если https://pandia.ru/text/78/516/images/image074_11.gif" width="42" height="25 src="> – линейно независимые решения уравнения (2..gif" width="19" height="25 src=">.gif" width="129" height="25 src=">есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка..gif" width="85" height="25 src=">.gif" width="19" height="25 src=">.gif" width="220" height="47">

Постоянные https://pandia.ru/text/78/516/images/image003_79.gif" width="19" height="25 src="> из этой системы линейных алгебраических уравнений определяются однозначно, так как определитель этой системы https://pandia.ru/text/78/516/images/image006_56.gif" width="51" height="25 src=">:

https://pandia.ru/text/78/516/images/image116_7.gif" width="138" height="25 src=">.gif" width="19" height="25 src=">.gif" width="69" height="25 src=">.gif" width="235" height="48 src=">..gif" width="143" height="25 src="> (5..gif" width="77" height="25 src=">. Согласно предыдущему параграфу общее решение лоду 2-го порядка легко определяется, если известны два линейно независимых частных решения этого уравнения. Простой метод нахождения частных решений уравнения с постоянными коэффициентами предложил Л. Эйлер..gif" width="25" height="26 src=">, получим алгебраическое уравнение, которое называется характеристическим:

https://pandia.ru/text/78/516/images/image124_5.gif" width="59" height="26 src="> будет решением уравнения (5.1) только при тех значениях k, которые являются корнями характеристического уравнения (5.2)..gif" width="49" height="25 src=">..gif" width="76" height="28 src=">.gif" width="205" height="47 src="> и общее решение (5..gif" width="45" height="25 src=">..gif" width="74" height="26 src=">..gif" width="83" height="26 src=">. Проверим, что эта функция удовлетворяет уравнению (5.1)..gif" width="190" height="26 src=">. Подставляя эти выражения в уравнение (5.1), получим

https://pandia.ru/text/78/516/images/image141_6.gif" width="328" height="26 src=">, т. к..gif" width="137" height="26 src=">.

Частные решения https://pandia.ru/text/78/516/images/image145_6.gif" width="86" height="28 src="> линейно независимы, т. к..gif" width="166" height="26 src=">.gif" width="45" height="25 src=">..gif" width="65" height="33 src=">.gif" width="134" height="25 src=">.gif" width="267" height="25 src=">.gif" width="474" height="25 src=">.

Обе скобки в левой части этого равенства тождественно равны нулю..gif" width="174" height="25 src=">..gif" width="132" height="25 src="> есть решение уравнения (5.1)..gif" width="129" height="25 src="> будет иметь вид:

https://pandia.ru/text/78/516/images/image162_6.gif" width="179" height="25 src="> f(x) (6.1)

представляется в виде суммы общего решения https://pandia.ru/text/78/516/images/image164_6.gif" width="195" height="25 src="> (6.2)

и любого частного решения https://pandia.ru/text/78/516/images/image166_6.gif" width="87" height="25 src="> будет решением уравнения (6.1)..gif" width="272" height="25 src="> f(x). Это равенство является тождеством, т. к..gif" width="128" height="25 src="> f(x). Следовательно.gif" width="85" height="25 src=">.gif" width="138" height="25 src=">.gif" width="18" height="25 src="> – линейно независимые решения этого уравнения. Таким образом:

https://pandia.ru/text/78/516/images/image173_5.gif" width="289" height="48 src=">

https://pandia.ru/text/78/516/images/image002_107.gif" width="19" height="25 src=">.gif" width="11" height="25 src=">.gif" width="51" height="25 src=">, а такой определитель, как мы видели выше, отличен от нуля..gif" width="19" height="25 src="> из системы уравнений (6..gif" width="76" height="25 src=">.gif" width="76" height="25 src=">.gif" width="140" height="25 src="> будет решением уравнения

https://pandia.ru/text/78/516/images/image179_5.gif" width="91" height="25 src="> в уравнение (6.5), получим

https://pandia.ru/text/78/516/images/image181_5.gif" width="140" height="25 src=">.gif" width="128" height="25 src="> f(x) (7.1)

где https://pandia.ru/text/78/516/images/image185_5.gif" width="34" height="25 src="> уравнения (7.1) в случае, когда правая часть f(x) имеет специальный вид. Это метод называется методом неопределенных коэффициентов и состоит в подборе частного решения в зависимости от вида правой части f(x). Рассмотрим правые части следующего вида:

1..gif" width="282" height="25 src=">.gif" width="53" height="25 src=">, могут равняться нулю. Укажем вид, в котором надо брать частное решение в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image191_5.gif" width="393" height="25 src=">.gif" width="157" height="25 src=">.

Решение.

Для уравнения https://pandia.ru/text/78/516/images/image195_4.gif" width="86" height="25 src=">..gif" width="62" height="25 src=">..gif" width="101" height="25 src=">.gif" width="153" height="25 src=">.gif" width="383" height="25 src=">.

Обе части сокращаем на https://pandia.ru/text/78/516/images/image009_41.gif" height="25 src="> в левой и правой частях равенства

https://pandia.ru/text/78/516/images/image206_5.gif" width="111" height="40 src=">

Из полученной системы уравнений находим: https://pandia.ru/text/78/516/images/image208_5.gif" width="189" height="25 src=">, а общее решение заданного уравнения есть:

https://pandia.ru/text/78/516/images/image190_5.gif" width="11" height="25 src=">.gif" width="423" height="25 src=">,

где https://pandia.ru/text/78/516/images/image212_5.gif" width="158" height="25 src=">.

Решение.

Соответствующее характеристическое уравнение имеет вид:

https://pandia.ru/text/78/516/images/image214_6.gif" width="53" height="25 src=">.gif" width="85" height="25 src=">.gif" width="45" height="25 src=">.gif" width="219" height="25 src=">..gif" width="184" height="35 src=">. Окончательно имеем следующее выражение для общего решения:

https://pandia.ru/text/78/516/images/image223_4.gif" width="170" height="25 src=">.gif" width="13" height="25 src="> отлично от нуля. Укажем вид частного решения в этом случае.

а) Если число https://pandia.ru/text/78/516/images/image227_5.gif" width="204" height="25 src=">,

где https://pandia.ru/text/78/516/images/image226_5.gif" width="16" height="25 src="> является корнем характеристического уравнения для уравнения (5..gif" width="229" height="25 src=">,

где https://pandia.ru/text/78/516/images/image229_5.gif" width="147" height="25 src=">.

Решение.

Корни характеристического уравнения для уравнения https://pandia.ru/text/78/516/images/image231_4.gif" width="58" height="25 src=">.gif" width="203" height="25 src=">.

Правая часть заданного в примере 3 уравнения имеет специальный вид: f(x) https://pandia.ru/text/78/516/images/image235_3.gif" width="50" height="25 src=">.gif" width="55" height="25 src=">.gif" width="229" height="25 src=">.

Для определения https://pandia.ru/text/78/516/images/image240_2.gif" width="11" height="25 src=">.gif" width="43" height="25 src="> и подставляем в заданное уравнение:

Приводя подобные члены, приравнивая коэффициенты при https://pandia.ru/text/78/516/images/image245_2.gif" width="46" height="25 src=">.gif" width="100" height="25 src=">.

Окончательно общее решение заданного уравнения имеет вид: https://pandia.ru/text/78/516/images/image249_2.gif" width="281" height="25 src=">.gif" width="47" height="25 src=">.gif" width="10" height="25 src="> соответственно, причем один из этих многочленов может равняться нулю. Укажем вид частного решения в этом общем случае.

а) Если число https://pandia.ru/text/78/516/images/image255_2.gif" width="605" height="51">, (7.2)

где https://pandia.ru/text/78/516/images/image257_2.gif" width="121" height="25 src=">.

б) Если число https://pandia.ru/text/78/516/images/image210_5.gif" width="80" height="25 src=">, то частное решение лнду будет иметь вид:

https://pandia.ru/text/78/516/images/image259_2.gif" width="17" height="25 src=">. В выражении (7..gif" width="121" height="25 src=">.

Пример 4. Указать вид частного решения для уравнения

https://pandia.ru/text/78/516/images/image262_2.gif" width="129" height="25 src=">..gif" width="95" height="25 src=">. Общее решение лоду имеет вид:

https://pandia.ru/text/78/516/images/image266_2.gif" width="183" height="25 src=">..gif" width="42" height="25 src=">..gif" width="36" height="25 src=">.gif" width="351" height="25 src=">.

Далее коэффициенты https://pandia.ru/text/78/516/images/image273_2.gif" width="34" height="25 src=">.gif" width="42" height="28 src="> есть частное решение для уравнения с правой частью f1(x), а Вариация" href="/text/category/variatciya/" rel="bookmark">вариации произвольных постоянных (метод Лагранжа).

Непосредственное нахождение частного решения лнду, кроме случая уравнения с постоянными коэффициентами, причем со специальными свободными членами, представляет большие трудности. Поэтому для нахождения общего решения лнду обычно применяют метод вариации произвольных постоянных, который всегда дает возможность найти общее решение лнду в квадратурах, если известна фундаментальная система решений соответствующего однородного уравнения. Этот метод состоит в следующем.

Согласно вышеизложенному, общее решение линейного однородного уравнения:

https://pandia.ru/text/78/516/images/image278_2.gif" width="46" height="25 src=">.gif" width="51" height="25 src="> – не постоянные, а некоторые, пока неизвестные, функции от f(x). . нужно брать из интервала. В действительности, в этом случае определитель Вронского отличен от нуля во всех точках интервала, т. е. во всем пространстве – комплексный корень характеристического уравнения..gif" width="20" height="25 src="> линейно независимых частных решений вида:

В формуле общего решения этим корнем соответствует выражение вида.

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет общее решение
, гдеилинейно-независимые частные решения этого уравнения.

Общий вид решений однородного дифференциального уравнения второго порядка с постоянными коэффициентами
, зависит от корней характеристического уравнения
.

Корни характеристического

уравнения

Вид общего решения

Корни идействительные и различные

Корни ==

действительные и одинаковые

Корни комплексные
,

Пример

Найти общее решение линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:

1)

Решение:
.

Решив его, найдем корни
,
действительные и различные. Следовательно, общее решение имеет вид:
.

2)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни

действительные и одинаковые. Следовательно, общее решение имеет вид:
.

3)

Решение: Составим характеристическое уравнение:
.

Решив его, найдем корни
комплексные. Следовательно, общее решение имеет вид:.

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами имеет вид

Где
. (1)

Общее решение линейного неоднородного дифференциального уравнения второго порядка имеет вид
, где
– частное решение этого уравнения,– общее решение соответствующего однородного уравнения, т.е. уравнения.

Вид частного решения
неоднородного уравнения (1) в зависимости от правой части
:

Правая часть

Частное решение

–многочлен степени

, где – число корней характеристического уравнения, равных нулю.

, где =
является корнем характеристического уравнения.

Где – число, равное числу корней характеристического уравнения, совпадающих с
.

где – число корней характеристического уравнения, совпадающих с
.

Рассмотрим различные виды правых частей линейного неоднородного дифференциального уравнения :

1.
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где

, а– число корней характеристического уравнения, равных нулю.

Пример

Найти общее решение
.

Решение:





.

Б) Так как правая часть уравнения является многочленом первой степени и ни один из корней характеристического уравнения
не равен нулю (
), то частное решение ищем в виде, гдеи– неизвестные коэффициенты. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим.

Приравнивая коэффициенты при одинаковых степенях в обеих частях равенства
,
, находим
,
. Итак, частное решение данного уравнения имеет вид
, а его общее решение.

2. Пусть правая часть имеет вид
, где– многочлен степени. Тогда частное решение
можно искать в виде
, где
– многочлен той же степени, что и
, а– число, показывающее, сколько разявляется корнем характеристического уравнения.

Пример

Найти общее решение
.

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.



характеристического уравнения

, где– неизвестный коэффициент. Дифференцируя дважды
и подставляя
,
и
в исходное уравнение, находим. Откуда
, то есть
или
.

Итак, частное решение данного уравнения имеет вид
, а его общее решение
.

3. Пусть правая часть имеет вид , где
и– данные числа. Тогда частное решение
можно искать в виде, гдеи– неизвестные коэффициенты, а– число, равное числу корней характеристического уравнения, совпадающих с
. Если в выражение функции
входит хотя бы одна из функций
или
, то в
надо всегда вводитьобе функции.

Пример

Найти общее решение .

Решение:

А) Найдем общее решение соответствующего однородного уравнения
. Для этого запишем характеристическое уравнение
. Найдем корни последнего уравнения
. Следовательно, общее решение однородного уравнения имеет вид
.

Б) Так как правая часть уравнения есть функция
, то контрольное число данного уравнения, оно не совпадает с корнями
характеристического уравнения
. Тогда частное решение ищем в виде

Где и– неизвестные коэффициенты. Дифференцируя дважды, получими. Подставляя
,
и
в исходное уравнение, находим

.

Приводя подобные слагаемые, получим

.

Приравниваем коэффициенты при
и
в правой и левой частях уравнения соответственно. Получаем систему
. Решая ее, находим
,
.

Итак, частное решение исходного дифференциального уравнения имеет вид .

Общее решение исходного дифференциального уравнения имеет вид .

Дифференциальные уравнения второго порядка и высших порядков.
Линейные ДУ второго порядка с постоянными коэффициентами.
Примеры решений.

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений . Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка .

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка . А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка . В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка . Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами . Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение .

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение .

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует . Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.
Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Пример 9

Решить однородное дифференциальное уравнение третьего порядка

Решение: Составим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами:
(1) .
Его решение можно получить следуя общему методу понижения порядка .

Однако проще сразу получить фундаментальную систему n линейно независимых решений и на ее основе составить общее решение. При этом вся процедура решения сводится к следующим шагам.

Ищем решение уравнения (1) в виде . Получаем характеристическое уравнение :
(2) .
Оно имеет n корней. Решаем уравнение (2) и находим его корни . Тогда характеристическое уравнение (2) можно представить в следующем виде:
(3) .
Каждому корню соответствует одно из линейно независимых решений фундаментальной системы решений уравнения (1). Тогда общее решение исходного уравнения (1) имеет вид:
(4) .

Действительные корни

Рассмотрим действительные корни . Пусть корень однократный. То есть множитель входит в характеристическое уравнение (3) только один раз. Тогда этому корню соответствует решение
.

Пусть - кратный корень кратности p . То есть
. В этом случае множитель входит в p раз:
.
Этим кратным (равным) корням соответствуют p линейно независимых решений исходного уравнения (1):
; ; ; ...; .

Комплексные корни

Рассмотрим комплексные корни . Выразим комплексный корень через действительную и мнимую части:
.
Поскольку коэффициенты исходного действительные, то кроме корня имеется комплексно сопряженный корень
.

Пусть комплексный корень однократный. Тогда паре корней соответствуют два линейно-независимых решения :
; .

Пусть - кратный комплексный корень кратности p . Тогда комплексно сопряженное значение также является корнем характеристического уравнения кратности p и множитель входит в p раз:
.
Этим 2 p корням соответствуют 2 p линейно независимых решений:
; ; ; ... ;
; ; ; ... .

После того как фундаментальная система линейно независимых решений найдена, по получаем общее решение .

Примеры решений задач

Пример 1

Решить уравнение:
.

Решение


.
Преобразуем его:
;
;
.

Рассмотрим корни этого уравнения. Мы получили четыре комплексных корня кратности 2:
; .
Им соответствуют четыре линейно-независимых решения исходного уравнения:
; ; ; .

Также мы имеем три действительных корня кратности 3:
.
Им соответствуют три линейно-независимых решения:
; ; .

Общее решение исходного уравнения имеет вид:
.

Ответ

Пример 2

Решить уравнение

Решение

Ищем решение в виде . Составляем характеристическое уравнение:
.
Решаем квадратное уравнение .
.

Мы получили два комплексных корня:
.
Им соответствуют два линейно-независимых решения:
.
Общее решение уравнения:
.


Top