Что такое рентгеновские лучи – свойства и применение излучения. История открытия и области применения рентгеновского излучения

Основные свойства рентгеновского излучения

1. Большая проникающая и ионизирующая способность.

2. Не отклоняются электрическим и магнитным полем.

3. Обладают фотохимическим действием.

4. Вызывают свечение веществ.

5. Отражение, преломление и дифракция как у видимого излучения.

6. Оказывают биологическое действие на живые клетки.

1. Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z³λ³, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах - т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.

В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения - за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ). Однако при другом подходе, когда "ренгеновским" называется излучение, возникшее при взаимодействии электрона и ядра или только электронов, такой процесс имеет место быть. Кроме того, очень жесткое рентгеновское излучение с энергией кванта более 1 МэВ, способно вызвать Ядерный фотоэффект.

[править]

2. Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

[править]

3. Регистрация

Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.

Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30-100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.

В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.

Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.



Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20-60 кв и кожно-фокусном расстоянии 3-7 см (короткодистанционная рентгенотерапия) или при напряжении 180-400 кв и кожно-фокусном расстоянии 30-150 см (дистанционная рентгенотерапия).

Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

[править]

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Получение рентгеновского излучения

Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов - частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем (рис. 11), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры.

Рис. 11.

Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 - электронный пучок; 2 - катод с фокусирующим электродом; 3 - стеклянная оболочка (трубка); 4 - вольфрамовая мишень (антикатод); 5 - нить накала катода; 6 - реально облучаемая площадь; 7 - эффективное фокальное пятно; 8 - медный анод; 9 - окно; 10 - рассеянное рентгеновское излучение.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку бульшая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74. Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. В. Рентген стал автором своего открытия в возрасте 50 лет, занимая пост ректора Вюрцбургского Университета и имея репутацию одного из лучших экспериментаторов своего времени. Одним из первых нашел техническое применение открытию Рентгена американец Эдисон. Он создал удобный демонстрационный аппарат и уже в мае 1896 года организовал в Нью-Йорке рентгеновскую выставку, на которой посетители могли разглядывать собственную руку на светящемся экране. После того, как помощник Эдисона умер от тяжелых ожогов, которые он получил при постоянных демонстрациях, изобретатель прекратил дальнейшие опыты с рентгеновскими лучами.

Рентгеновское излучение стали применять в медицине в связи с его большой проникающей способностью. Поначалу, рентгеновское излучение использовалось для исследования переломов костей и определения местоположения инородных тел в теле человека. В настоящее время существует несколько методов, основанных на рентгеновском излучении. Но у данных методов есть свои недостатки: излучение может вызвать глубокие повреждения кожи. Появлявшиеся язвы нередко переходили в рак. Во многих случаях приходилось ампутировать пальцы или руки. Рентгеноскопия (синоним просвечивание) — один из основных методов рентгенологического исследования, состоящий в получении на просвечивающем (флюоресцирующем) экране плоскостного позитивного изображения исследуемого объекта. При рентгеноскопии исследуемый находится между просвечивающим экраном и рентгеновской трубкой. На современных рентгеновских просвечивающих экранах изображение возникает в момент включения рентгеновской трубки и исчезает сразу же после ее выключения. Рентгеноскопия дает возможность изучить функцию органа - пульсацию сердца, дыхательные движения ребер, легких, диафрагмы, перистальтику органов пищеварительного тракта и т.д. Рентгеноскопия используется при лечении заболеваний желудка, желудочно-кишечного тракта, 12-перстной кишки, заболеваний печени, желчного пузыря и желчевыводящих путей. При этом медицинский зонд и манипуляторы вводят без повреждения тканей, а действия в процессе операции контролируются рентгеноскопией и видны на мониторе.
Рентгенография - метод рентгенодиагностики с регистрацией неподвижного изображения на светочувствительном материале - спец. фотоплёнке (рентгеновской плёнке) или фотобумаге с последующей фотообработкой; при цифровой рентгенографии изображение фиксируется в памяти компьютера. Выполняется на рентгенодиагностических аппаратах - стационарных, установленных в специально оборудованных рентгеновских кабинетах, или передвижных и переносных - у постели больного или в операционной. На рентгенограммах значительно отчетливей, чем на флюоресцирующем экране, отображаются элементы структур различных органов. Рентгенографию выполняют в целях выявления и профилактики различных заболеваний, основная цель её помочь врачам разных специальностей правильно и быстро поставить диагноз. Рентгеновский снимок фиксирует состояние органа или ткани лишь в момент съемки. Однако однократная рентгенограмма фиксирует только анатомические изменения в определенный момент, она дает статику процесса; посредством серии рентгенограмм, произведенных через определенные промежутки времени, можно изучить динамику процесса, то есть функциональные изменения. Томография. Слово томография можно перевести с греческого как «изображение среза». Это означает, что назначение томографии - получение послойного изображения внутренней структуры объекта исследования. Компьютерная томогарфия характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.
Флюорография - диагностический метод, позволяющий получить изображение органов и тканей, был разработан еще в конце 20-го столетия, спустя год после того, как были обнаружены рентгеновские лучи. На снимках можно разглядеть склероз, фиброз, инородные предметы, новообразования, воспаления, имеющие развитую степень, присутствие в полостях газов и инфильтрата, абсцессы, кисты и так далее. Чаще всего производится флюорография грудной клетки, позволяющая выявить туберкулез, злокачественную опухоль в легких или груди и иные патологии.
Рентгенотерапия — это современный метод, с помощью которого производится лечение некоторых патологий суставов. Основными направлениями лечения ортопедических заболеваний данным методом, являются: Хронические. Воспалительные процессы суставов (артрит, полиартрит); Дегенеративные (остеоартроз, остеохондроз, деформирующий спондилез). Целью рентгенотерапии является угнетение жизнедеятельности клеток патологически изменённых тканей или полное их разрушение. При неопухолевых заболеваниях рентгенотерапия направлена на подавление воспалительной реакции, угнетение пролиферативных процессов, снижение болевой чувствительности и секреторной активности желёз. Следует учитывать, что наиболее чувствительны к рентгеновским лучам половые железы, кроветворные органы, лейкоциты, клетки злокачественных опухолей. Дозу облучения в каждом конкретном случае определяют индивидуально.

За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия.
Таким образом, рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 105 - 102 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т.п.

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Ученого из Германии Вильгельма Конрада Рентгена по праву можно считать основоположником рентгенографии и первооткрывателем ключевых особенностей рентгеновских лучей.

Тогда в далеком 1895 году он даже не подозревал о широте применения и популярности, открытых им Х-излучений, хотя уже тогда они подняли широкий резонанс в мире науки.

Вряд ли изобретатель мог догадываться, какую пользу или вред принесет плод его деятельности. Но мы с вами сегодня попробуем выяснить, какое воздействие проявляет эта разновидность излучения на человеческое тело.

  • Х-излучение наделено огромной проникающей способностью, но она зависит от длины волны и плотности материала, который облучается;
  • под воздействием излучения некоторые предметы начинают светиться;
  • рентгеновский луч влияет на живых существ;
  • благодаря Х-лучам начинают протекать некоторых биохимические реакции;
  • рентгена луч может забирать у некоторых атомов электроны и тем самым ионизировать их.

Даже самого изобретателя в первую очередь волновал вопрос о том, что конкретно из себя представляют открытые им лучи.

После проведения целой серии экспериментальных исследований, ученый выяснил, что Х-лучи – это промежуточные волны между ультрафиолетом и гамма-излучением, длина которых составляет 10 -8 см.

Свойства рентгеновского луча, которые перечислены выше, обладают разрушительными свойствами, однако это не мешает применять их с полезными целями.

Так где же в современном мире можно использовать Х-лучи?

  1. С их помощью можно изучать свойства многих молекул и кристаллических образований.
  2. Для дефектоскопии, то есть проверять промышленные детали и приборы на предмет дефектов.
  3. В медицинской отрасли и терапевтических исследованиях.

В силу малых длин всего диапазона данных волн и их уникальных свойств, стало возможным важнейшее применение излучения, открытого Вильгельмом Рентгеном.

Поскольку тема нашей статьи ограничена воздействием Х-лучей на организм человека, который сталкивается с ними лишь при походе в больницу, то далее мы будем рассматривать исключительно эту отрасль применения.

Ученый, изобретший рентгеновские лучи, сделал их бесценным даром для всего населения Земли, поскольку не стал патентовать свое детище для дальнейшего использования.

Начиная со времен Первой моровой войны портативные установки для рентгена спасли сотни жизней раненных. Сегодня рентгеновские лучи имеют два основных спектра применения:

  1. Диагностика с его помощью.

Рентгенологическая диагностика применяется при различных вариантах:

  • рентгеноскопия или просвечивание;
  • рентгенография или снимок;
  • флюорографическое исследование;
  • томографирование при помощи рентгена.

Теперь нужно разобраться, чем эти методы отличаются друг от друга:

  1. Первый метод предполагает, что обследуемый располагается между специальным экраном с флуоресцентным свойством и рентгеновской трубкой. Доктор на основе индивидуальных особенностей подбирает требуемую силу лучей и получает изображение костей и внутренних органов на экране.
  2. При втором методе пациента кладут на специальную рентгеновскую пленку в кассете. При этом аппаратура размещается над человеком. Данная методика позволяет получить изображение в негативе, но с более мелкими деталями, чем при рентгеноскопии.
  3. Массовые обследования населения на предмет заболевания легких позволяет провести флюорография. В момент процедуры с большого монитора изображение переноситься на специальную пленку.
  4. Томография позволяет получить изображения внутренних органов в нескольких вариантах сечения. Производиться целая серия снимков, которые в дальнейшем называются томограммой.
  5. Если к предыдущему методу подключить помощь компьютера, то специализированные программы создадут целостное изображение, сделанное при помощи рентгеновского сканера.

Все эти методики диагностики проблем со здоровьем основываются на уникальном свойстве Х-лучей засвечивать фотопленку. При этом проникающая способность у косных и других тканей нашего тела разная, что отображается на снимке.

После того, как было обнаружено еще одно свойство лучей рентгена влиять на ткани с биологической точки зрения, данная особенность стала активно применяться при терапии опухолей.


Клетки, особенно злокачественные, делятся очень быстро, а ионизирующее свойство излучения положительно сказывается при лечебной терапии и замедляет рост опухоли.

Но другой стороной медали является негативное влияние рентгена на клетки кроветворной, эндокринной и иммунной системы, которые также быстро делятся. В результате отрицательного влияния Х-луча проявляется лучевая болезнь.

Влияние рентгена на человеческий организм

Буквально сразу после такого громогласного открытия в научном мире, стало известно, что лучи Рентгена могут оказывать воздействие на тело человека:

  1. В ходе исследований свойств Х-лучей выяснилось, что они способны вызывать ожоги на кожном покрове. Очень схожие на термические. Однако глубина поражения была куда больше, чем бытовые травмы, а заживали они хуже. Многие учены, занимающиеся этими коварными излучениями теряли пальцы на руках.
  2. Методом проб и ошибок было установлено, что если уменьшить время и лозу облечения, то ожогов можно избежать. Позже стали применяться свинцовые экраны и дистанционный метод облучения пациентов.
  3. Долгосрочная перспектива вредности лучей показывает, что изменения состава крови после облучения приводит к лейкемии и раннему старению.
  4. Степень тяжести воздействия рентгеновских лучей на организм человека прямо зависит от облучаемого органа. Так, при рентгенографии малого таза может наступить бесплодие, а при диагностике кроветворных органов – болезни крови.
  5. Даже самые незначительные облучения, но на протяжении долгого времени, могут привести к изменениям на генетическом уровне.

Конечно, все исследования проводились на животных, однако учеными доказано, что патологические изменения будут распространяться и на человека.

ВАЖНО! На основе полученных данных были разработаны стандарты рентгеновского облучения, которые едины на весь мир.

Дозы рентгеновских лучей при диагностике

Наверное, каждый, кто выходит из кабинета доктора после проведенного рентгена, задается вопросом о том, как эта процедура повлияет на дальнейшее здоровье?

Радиационной облучение в природе также существует и с ним мы сталкиваемся ежедневно. Чтобы было проще понять, как рентген влияет на наш организм, мы сравним эту процедуру с получаемым природным облучением:

  • при рентгенографии грудной клетки человек получает дозу радиации, приравниваемой к 10 дням фонового облучения, а желудка или кишечника – 3 годам;
  • томограмма на компьютере брюшной полости или всего тела – эквивалент 3 годам облучения;
  • обследование на рентгене груди – 3 месяца;
  • конечности облучается, практически не принося вредя здоровью;
  • стоматологический рентген в силу точной направленности лучевого пучка и минимального времени воздействия – также не является опасным.

ВАЖНО! Несмотря на то, что приведенные данные, как бы пугающе они не звучали, отвечают международным требованиям. Однако пациент имеет полное право попросить дополнительные средства защиты в случае сильного опасения за свое самочувствие.

Все мы сталкиваемся с рентгеновским обследованием, причем неоднократно. Однако одна категория людей вне положенных процедур – это беременные женщины.

Дело в том, что Х-лучи чрезвычайно сказываются здоровье будущего ребенка. Эти волны способны вызвать пороки внутриутробного развития в результате влияния на хромосомы.

ВАЖНО! Наиболее опасным периодом для проведения рентгена является беременность до 16 недели. В этот период самыми уязвимыми являются тазовая, брюшная и позвоночная область малыша.

Зная о таком отрицательном свойстве рентгена, доктора всего мира стараются избегать назначения его проведения у беременных.

Но существуют и другие источники излучения, с которыми может столкнуться беременная женщина:

  • микроскопы, работающие на электричестве;
  • мониторы цветных телевизоров.

Те, кто готовиться стать мамой обязательно должны знаю про подстерегающую их опасность. В период лактации рентгеновские лучи не несут угрозы для организма кормящей и малыша.

Как быть после рентгена?

Даже самые незначительные последствия рентгеновского облучения можно свести к минимуму, если выполнить несколько простых рекомендаций:

  • сразу после процедуры выпить молока. Как известно, оно способно выводить радиацию;
  • такими же свойствами обладает белое сухое вино или сок винограда;
  • желательно в первое время кушать больше продуктов, содержащих йод.

ВАЖНО! Не стоит прибегать ни к каким медицинским процедурам или использовать лечебные методы после посещения рентген-кабинета.

Какими бы негативными свойствами не обладали, некогда открытые Х-лучи, все равно польза от их применения значительно превышает наносимый вред. В медицинских учреждениях процедура просвечивания проводиться быстро и с минимальными дозами.


Top