Рентгеновские лучи в медицине, применение. Основные свойства рентгеновского излучения

Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке.

Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:

  • ускорители заряженных частиц.

История открытия

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Х-лучи способны проникать даже сквозь стены. Так Рентген осознал, что сделал величайшее открытие в области медицины. Именно с этого времени стали формироваться отдельные разделы в науке, такие как рентгенология и радиология.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.


Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.


Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.


Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.


Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

ЛЕКЦИЯ

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

    Природа рентгеновского излучения

    Тормозное рентгеновское излучение, его спектральные свойства.

    Характеристическое рентгеновское излучение (для ознакомления).

    Взаимодействие рентгеновского излучения с веществом.

    Физические основы использования рентгеновского излучения в медицине.

Рентгеновское излучение (X – лучи) открыты К. Рентгеном который в 1895 г. стал первым Нобелевским лауреатом по физике.

    Природа рентгеновского излучения

Рентгеновское излучение – электромагнитные волны с длинной от 80 до 10 –5 нм. Длинноволновое рентгеновское излучение перекрывается коротковолновым УФ излучением, коротковолновое – длинноволновым-излучением.

Рентгеновское излучение получают в рентгеновских трубках. рис.1.

К – катод

1 – пучок электронов

2 –рентгеновское излучение

Рис. 1. Устройство рентгеновской трубки.

Трубка представляет собой стеклянную колбу (с возможно высоким вакуумом: давление в ней порядка 10 –6 мм.рт.ст.) с двумя электродами: анодом А и катодом К, к которым приложено высокое напряжение U (несколько тысяч вольт). Катод является источником электронов (за счет явления термоэлектронной эмиссии). Анод – металлический стержень, имеет наклонную поверхность для того, чтобы направлять возникающее рентгеновское излучение под углом к оси трубки. Он изготовляется из хорошо теплопроводящего материала для отвода теплоты, образующейся при бомбардировке электронов. На скошенном торце имеется пластинка из тугоплавкого металла (например, вольфрама).

Сильный разогрев анода обусловлен тем, что основное количество электронов в катодном пучке, попав на анод, испытывает многочисленные столкновения с атомами вещества и передает им большую энергию.

Под действием высокого напряжения электроны, испущенные раскаленной нитью катода, ускоряются до больших энергий. Кинетическая энергия электрона равна mv 2 /2. Она равна энергии, которую он приобретает, двигаясь в электростатическом поле трубки:

mv 2 /2 = eU (1)

где m, e – масса и заряд электрона, U – ускоряющее напряжение.

Процессы приводящие к возникновению тормозного рентгеновского излучения обусловлены интенсивным торможением электронов в веществе анода электростатическим полем атомного ядра и атомарных электронов.

Механизм возникновения можно представить следующим образом. Движущиеся электроны – это некоторый ток, образующий свое магнитное поле. Замедление электронов – снижение силы тока и, соответственно, изменение индукции магнитного поля, которое вызовет возникновение переменного электрического поля, т.е. появление электромагнитной волны.

Таким образом, когда заряженная частица влетает в вещество, она тормозится, теряет свою энергию и скорость и излучает электромагнитные волны.

    Спектральные свойства тормозного рентгеновского излучения .

Итак, в случае торможения электрона в веществе анода возникает тормозное рентгеновское излучение.

Спектр тормозного рентгеновского излучения является сплошным . Причина этого в следующем.

При торможении электронов у каждого из них часть энергии идет на нагрев анода (Е 1 = Q), другая часть на создание фотона рентгеновского излучения (Е 2 = hv), иначе, eU = hv + Q. Соотношение между этими частями случайное.

Таким образом, непрерывный спектр тормозного рентгеновского излучения образуется благодаря торможению множества электронов, каждый из которых испускает один квант рентгеновского излучения hv (h) строго определенной величины. Величина этого кванта различна для разных электронов. Зависимость потока энергии рентгеновского излучения от длины волны , т.е. спектр рентгеновского излучения представлен на рис.2.

Рис.2. Спектр тормозного рентгеновского излучения: а) при различном напряжении U в трубке; б) при различной температуре Т катода.

Коротковолновое (жесткое) излучение обладает большей проникающей способностью, чем длинноволновое (мягкое). Мягкое излучение сильнее поглощается веществом.

Со стороны коротких длин волн спектр резко обрывается на определенной длине волны  m i n . Такое коротковолновое тормозное излучение возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона (Q = 0):

eU = hv max = hc/ min ,  min = hc/(eU), (2)

 min (нм) = 1,23/UкВ

Спектральный состав излучения зависит от величины напряжения на рентгеновской трубке, с увеличением напряжения значение  m i n смещается в сторону коротких длин волн (рис. 2a).

При изменении температуры Т накала катода возрастает эмиссия электронов. Следовательно, увеличивается ток I в трубке, но спектральный состав излучения не изменяется (рис. 2б).

Поток энергии Ф  тормозного излучения прямо пропорционален квадрату напряжения U между анодом и катодом, силе тока I в трубке и атомному номеру Z вещества анода:

Ф = kZU 2 I. (3)

где k = 10 –9 Вт/(В 2 А).

    Характеристическое рентгеновское излучение (для ознакомления).

Увеличение напряжения на рентгеновской трубке приводит к тому, что на фоне сплошного спектра появляется линейчатый, который соответствует характеристическому рентгеновскому излучению. Это излучение специфично для материала анода.

Механизм его возникновения таков. При большом напряжении ускоренные электроны (с большой энергией) проникают в глубь атома и выбивают из его внутренних слоев электроны. На свободные места переходят электроны с верхних уровней, в результате чего высвечиваются фотоны характеристического излучения.

Спектры характеристического рентгеновского излучения отличаются от оптических спектров.

– Однотипность.

Однотипность характеристических спектров обусловлена тем, что внутренние электронные слои у разных атомов одинаковы и отличаются только энергетически из–за силового воздействия со стороны ядер, которое увеличивается с возрастанием порядкового номера элемента. Поэтому характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Опытно это было подтверждено сотрудником Рентгена – Мозли , который измерил частоты рентгеновских переходов для 33 элементов. Им был установлен закон.

ЗАКОН МОЗЛИ корень квадратный из частоты характеристического излучения есть линейная функция порядкового номера элемента:

= A  (Z – В), (4)

где v – частота спектральной линии, Z – атомный номер испускающего элемента. А, В – константы.

Важность закона Мозли заключается в том, что по этой зависимости можно по измеренной частоте рентгеновской линии точно узнать атомный номер исследуемого элемента. Это сыграло большую роль в размещении элементов в периодической системе.

Характеристические рентгеновские спектры атома не зависят от химического соединения, в которое входит атом элемента. Например, рентгеновский спектр атома кислорода одинаков для О 2, Н 2 О, в то время как оптические спектры этих соединений отличаются. Эта особенность рентгеновского спектра атома послужила основанием для названия "характеристическое излучение ".

    Взаимодействие рентгеновского излучения с веществом

Воздействие рентгеновского излучения на объекты определяется первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

Рентгеновское излучение в веществе поглощается или рассеивается . При этом могут происходить различные процессы, которые определяются соотношением энергии рентгеновского фотона hv и энергии ионизации А и (энергия ионизации А и – энергия, необходимая для удаления внутренних электронов за пределы атома или молекулы).

а) Когерентное рассеяние (рассеяние длинноволнового излучения) происходит тогда, когда выполняется соотношение

У фотонов вследствие взаимодействия с электронами изменяется только направление движения (рис.3а), но энергия hv и длина волны не меняются (поэтому это рассеяние называется когерентным ). Так как энергия фотона и атома не изменяются, то когерентное рассеяние не влияет на биологические объекты, но при создании защиты от рентгеновского излучения следует учитывать возможность изменения первичного направления пучка.

б) Фотоэффект происходит тогда, когда

При этом могут быть реализованы два случая.

    Фотон поглощается, электрон отрывается от атома (рис. 3б). Происходит ионизация. Оторвавшийся электрон приобретает кинетическую энергию: E к = hv – A и. Если кинетическая энергия велика, то электрон может ионизировать соседние атомы путем соударения, образуя новые вторичные электроны.

    Фотон поглощается, но его энергии не достаточно для отрыва электрона, и может происходить возбуждение атома или молекулы (рис.3в). Это часто приводит к последующему излучению фотона в области видимого излучения (рентгенолюминесценция), а в тканях – к активации молекул и фотохимическим реакциям. Фотоэффект происходит, в основном, на электронах внутренних оболочек атомов с высоким Z.

в) Некогерентное рассеяние (эффект Комптона, 1922 г.) происходит тогда, когда энергия фотона намного больше энергии ионизации

При этом электрон отрывается от атома (такие электроны называются электронами отдачи ), приобретает некоторую кинетическую энергию E к, энергия самого фотона уменьшается (рис. 4г):

hv = hv" + А и + Е к. (5)

Образующееся таким образом излучение с измененной частотой (длиной) называется вторичным , оно рассеивается по всем направлениям.

Электроны отдачи, если они имеют достаточную кинетическую энергию, могут ионизировать соседние атомы путем соударения. Таким образом, в результате некогерентного рассеяния образуется вторичное рассеянное рентгеновское излучение и происходит ионизация атомов вещества.

Указанные (а,б,в) процессы могут вызвать рад последующих. Например (рис. 3д), если при фотоэффекте происходит отрыв от атома электронов на внутренних оболочках, то на их место могут переходить электроны с более высоких уровней, что сопровождается вторичным характеристическим рентгеновским излучением данного вещества. Фотоны вторичного излучения, взаимодействуя с электронами соседних атомов, могут, в свою очередь, вызывать вторичные явления.

когерентное рассеяние

энергия и длина волны остаются неизменными

фотоэффект

фотон поглощается, е – отрывается от атома – ионизация

hv = А и + Е к

атом А возбуждается при поглощении фотона, R – рентгенолюминесценция

некогерентное рассеяние

hv = hv"+А и +Е к

вторичные процессы при фотоэффекте

Рис. 3 Механизмы взаимодействие рентгеновского излучения с веществом

Физические основы использования рентгеновского излучения в медицине

При падении рентгеновского излучения на тело оно незначительно отражается от его поверхности, а в основном проходит вглубь, при этом частично поглощается и рассеивается, частично проходит насквозь.

Закон ослабления.

Поток рентгеновского излучения ослабляется в веществе по закону:

Ф = Ф 0 е –   х (6)

где  – линейный коэффициент ослабления, который существенно зависит от плотности вещества. Он равен сумме трех слагаемых, соответствующих когерентному рассеянию  1, некогерентному  2 и фотоэффекту  3:

 =  1 +  2 +  3 . (7)

Вклад каждого слагаемого определяется энергией фотона. Ниже приведены соотношения этих процессов для мягких тканей (воды).

Энергия, кэВ

Фотоэффект

Комптон - эффект

Пользуются массовым коэффициентом ослабления, который не зависит от плотности вещества :

 m = /. (8)

Массовый коэффициент ослабления зависит от энергии фотона и от атомного номера вещества – поглотителя:

 m = k 3 Z 3 . (9)

Массовые коэффициенты ослабления кости и мягкой ткани (воды) отличаются:  m кости / m воды = 68.

Если на пути рентгеновских лучей поместить неоднородное тело и перед ним поставить флуоресцирующий экран, то это тело, поглощая и ослабляя излучение, образует на экране тень. По характеру этой тени можно судить о форме, плотности, структуре, а во многих случаях и о природе тел. Т.е. существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображение внутренних органов.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария (BaS0 4), можно видеть их теневое изображение (соотношение коэффициентов ослабления равно 354).

Использование в медицине.

В медицине используется рентгеновское излучение с энергией фотонов от 60 до 100-120 кэВ при диагностике и 150-200 кэВ при терапии.

Рентгенодиагностика распознавание заболеваний при помощи просвечивания тела рентгеновским излучением.

Рентгенодиагностику используют в различных вариантах, которые приведены ниже.

    При рентгеноскопии рентгеновская трубка расположена позади пациента. Перед ним располагается флуоресцирующий экран. На экране наблюдается теневое (позитивное) изображение. В каждом отдельном случае подбирается соответствующая жесткость излучения, так чтобы оно проходило через мягкие ткани, но достаточно поглощалось плотными. В противном случае получается однородная тень. На экране сердце, ребра видны темными, легкие – светлыми.

    При рентгенографии объект помещается на кассете, в которую вложена пленка со специальной фотоэмульсией. Рентгеновская трубка располагается над объектом. Получаемая рентгенограмма дает негативное изображение, т.е. обратное по контрасту с картиной, наблюдаемой при просвечивании. В данном методе имеет место большая четкость изображения, чем в (1), поэтому наблюдаются детали, которые трудно рассмотреть при просвечивании.

Перспективным вариантом данного метода является рентгеновская томография и "машинный вариант" – компьютерная томография.

3. При флюорографии, на чувствительной малоформатной пленке фиксируется изображение с большого экрана. При рассматривании снимки рассматриваются на специальном увеличителе.

Рентгенотерапия – использование рентгеновского излучения для уничтожения злокачественных образований.

Биологическое действие излучения заключается в нарушении жизнедеятельности, особенно быстро размножающихся клеток.

КОМПЬЮТЕРНАЯ ТОМОГРАФИЯ (КТ)

Метод рентгеновской компьютерной томографии основан на реконструкции изображения определенного сечения тела пациента путем регистрации большого количества рентгеновских проекций этого сечения, выполненных под разными углами. Информация от датчиков, регистрирующих эти проекции, поступает в компьютер, который по специальному программе вычисляет распределение плотно сти образца в исследуемом сечении и отображает его на экране дисплея. Полученное таким образом изображение сечения тела пациента характеризуется прекрасной четкостью и высокой информативностью. Программа позволяет при необходимости увеличить контраст изображения в десятки и даже сотни раз. Это расширяет диагностические возможности метода.

Видеографы (аппараты с цифровой обработкой рентгеновского изображения) в современной стоматологии.

В стоматологии именно рентгенологическое исследование является основным диагностическим методом. Однако ряд традиционных организационно–технических особенностей рентгенодиагностики делают ее не вполне комфортной как для пациента, так и для стоматологических клиник. Это, прежде всего, необходимость контакта пациента с ионизирующим излучением, создающим часто значительную лучевую нагрузку на организм, это также необходимость фотопроцесса, а следовательно, необходимость фотореактивов, в том числе токсичных. Это, наконец, громоздкий архив, тяжелые папки и конверты с рентгеновскими пленками.

Кроме того, современный уровень развития стоматологии делает недостаточной субъективную оценку рентгенограмм человеческим глазом. Как оказалось, из многообразия оттенков серого тона, содержащегося в рентгеновском изображении, глаз воспринимает только 64.

Очевидно, что для получения четкого и подробного изображения твердых тканей зубо–челюстной системы при минимальной лучевой нагрузке нужны иные решения. Поиск привел к созданию, так называемых, радиографических систем, видеографов – систем цифровой рентгенографии.

Без технических подробностей принцип действия таких систем состоит в следующем. Рентгеновское излучение поступает через объект не на фоточувствительную пленку, а на специальный внутриоральный датчик (специальную электронную матрицу). Соответствующий сигнал от матрицы передается на преобразующее его в цифровую форму оцифровывающее устройство (аналого-цифровой преобразователь, АЦП), связанное с компьютером. Специальное программное обеспечение строит на экране компьютера рентгеновское изображение и позволяет обработать его, сохранять на жестком или гибком носителе информации (винчестере, дискетах), в виде файла распечатывать его как картинку.

В цифровой системе рентгеновское изображение представляет собой совокупность точек, имеющих различные цифровые значения градации серого тона. Предусмотренная программой оптимизация отображения информации дает возможность получить оптимальный по яркости и контрастности кадр при относительно малой дозе облучения.

В современных системах, созданными, например, фирмами Trophy (Франция) или Schick (США) при формировании кадра используется 4096 оттенков серого, время экспозиции зависит от объекта исследования и, в среднем, составляет сотые – десятые доли секунды, снижение лучевой нагрузки по отношению к пленке – до 90 % для внутриоральных систем, до 70 % для панорамных видеографов.

При обработке изображений видеографы позволяют:

    Получать позитивные и негативные изображения, изображения в псевдоцвете, рельефные изображения.

    Повышать контраст и увеличивать интересующий фрагмент изображения.

    Оценивать изменение плотности зубных тканей и костных структур, контролировать однородность заполнения каналов.

    В эндодонтии определять длину канала любой кривизны, а в хирургии подбирать размер имплантата с точностью 0,1 мм.

    Уникальная система Caries detector с элементами искусственного интеллекта при анализе снимка позволяет обнаружить кариес в стадии пятна, кариес корня и скрытый кариес.

«Ф» в формуле (3) относится ко всему интервалу излучаемых длин волн и часто называется «Интегральный поток энергии».

Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении между ее электродами. Несмотря на то, что трубка находилась в черном ящике, Рентген обратил внимание, что флуоресцентный экран, случайно находившийся рядом, всякий раз светился, когда действовала трубка. Трубка оказалась источником излучения, которое могло проникать через бумагу, дерево, стекло и даже пластинку алюминия толщиной в полтора сантиметра.

Рентген определил, что газоразрядная трубка является источником нового вида невидимого излучения, обладающего большой проникающей способностью. Ученый не мог определить было ли это излучение потоком частиц или волн, и он решил дать ему название X-лучи. В последствие их назвали рентгеновскими лучами

Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Длина волны X-лучей колеблется от 70 нм до 10 -5 нм . Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм ), называются мягкими . Длина волны 1 - 10нм характеризует жесткие X-лучи. Они обладают огромной проникающей способностью.

Получение рентгеновского излучения

Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет собой вакуумизированный стеклянный баллон с расположенными в нем катодом и анодом. Разность потенциалов между катодом и анодом (антикатодом), достигает несколько сотен киловольт. Катод представляет собой вольфрамовую нить, подогреваемую электрическим током. Это приводит к испусканию катодом электронов в результате термоэлектронной эмиссии. Электроны ускоряются электрическим полем в рентгеновской трубке. Поскольку в трубке очень небольшое число молекул газа, то электроны по пути к аноду практически не теряют своей энергии. Они достигают анода с очень большой скоростью.

Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода. Большая часть энергии электронов рассеивается в виде тепла. Поэтому аноде необходимо искусственно охлаждать. Анод в рентгеновской трубке должен быть сделан из металла, имеющего высокую температуру плавления, например, из вольфрама.

Часть энергии, не рассеивающая в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи). Таким образом, рентгеновские лучи являются результатом бомбардировки электронами вещества анода. Есть два типа рентгеновского излучения: тормозное и характеристическое.

Тормозное рентгеновское излучение

Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В результате в энергию рентгеновского излучения переходят различные части их кинетической энергии.

Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.

Рентгеновские лучи не могут иметь энергию большую, чем кинетическая энергия образующих их электронов. Наименьшая длина волны рентгеновского излучения соответствует максимальной кинетической энергии тормозящихся электронов. Чем больше разность потенциалов в рентгеновской трубке, тем меньшие длины волны рентгеновского излучения можно получить.

Характеристическое рентгеновское излучение

Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр . Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атомов и выбивает один из их электронов. В результате появляется свободное место, которое может быть заполнено другим электроном, спускающимся с одной из верхних атомных орбиталей. Такой переход электрона с более высокого на более низкий энергетический уровень вызывает рентгеновское излучение определенной дискретной длины волны. Поэтому характеристическое рентгеновское излучение имеет линейчатый спектр . Частота линий характеристического излучения полностью зависит от структуры электронных орбиталей атомов анода.

Линии спектра характеристического излучения разных химических элементов имеют одинаковый вид, поскольку структура их внутренних электронных орбитальных идентична. Но длина их волны и частота, благодаря энергетическим различиям между внутренними орбиталями тяжелых и легких атомов.

Частота линий спектра характеристического рентгеновского излучения изменяется в соответствие с атомным номером металла и определяется уравнением Мозли: v 1/2 =A (Z-B ), где Z - атомный номер химического элемента, A и B - константы.

Первичные физические механизмы взаимодействия рентгеновского излучения с веществом

Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма:

1. Когерентное рассеяние . Эта форма взаимодействия происходит, когда фотоны рентгеновских лучей имеют меньшую энергию, чем энергия связи электронов с ядром атома. В таком случае, энергия фотона оказывается не достаточной для освобождения электронов из атомов вещества. Фотон не поглощается атомом, но изменяет направление распространения. При этом длина волны рентгеновского излучения остается неизменной.

2. Фотоэлектрический эффект (фотоэффект) . Когда фотон рентгеновского излучения достигает атома вещества, он может выбить один из электронов. Это происходит в том случае, если энергия фотона превышает энергию связи электрона с ядром. При этом фотон поглощается, а электрон высвобождается из атома. Если фотон несет большую энергию, чем необходимо для высвобождения электрона, он передаст оставшуюся энергию освобожденному электрону в форме кинетической энергии. Этот феномен, называемый фотоэлектрическим эффектом, происходит при поглощении относительно низкоэнергетического рентгеновского излучения.

Атом, который теряет один из своих электронов, становится положительным ионом. Продолжительность существования свободных электронов очень коротка. Они поглощаются нейтральными атомами, которые превращаются при этом в отрицательные ионы. Результатом фотоэлектрического эффекта является интенсивная ионизация вещества.

Если энергия фотона рентгеновского излучения меньше, чем энергия ионизации атомов, то атомы переходят в возбужденное состояние, но не ионизируются.

3. Некогерентное рассеяние (эффект Комптона) . Этот эффект обнаружен американским физиком Комптоном. Он происходит, если вещество поглощает рентгеновские лучи малой длины волны. Энергия фотонов таких рентгеновских лучей всегда больше, чем энергия ионизации атомов вещества. Эффект Комптона является результатом взаимодействия высокоэнергетического фотона рентгеновских лучей с одним из электронов внешней оболочки атома, который имеет сравнительно слабую связь с атомным ядром.

Высокоэнергетический фотон передает электрону некоторую часть своей энергии. Возбужденный электрон высвобождается из атома. Оставшаяся часть энергии первоначального фотона излучается в виде фотона рентгеновского излучения большей длины волны под некоторым углом к направлению движения первичного фотона. Вторичный фотон может ионизировать другой атом и т.д. Эти изменения направления и длины волны рентгеновских лучей известны как эффект Комптона.

Некоторые эффекты взаимодействия рентгеновского излучения с веществом

Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок рентгеновских лучей направить на непрозрачные объекты, то можно наблюдать как лучи пройдут сквозь объект, поставив экран, покрытый флюоресцирующим веществом.

Флуоресцентный экран можно заменить фотографической пленкой. Рентгеновские лучи оказывают на фотографическую эмульсию такое же действие, как и свет. Оба метода используются в практической медицине.

Другим важным эффектом рентгеновского излучения является их ионизирующая способность. Это зависит от их длины волны и энергии. Этот эффект обеспечивает метод для измерения интенсивности рентгеновского излучения. Когда рентгеновские лучи проходят через ионизационную камеру, возникает электрический ток, величина которого пропорциональна интенсивности рентгеновского излучения.

Поглощение рентгеновского излучения веществом

При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e -μd , где I 0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d - толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ

В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:

τ = kρZ 3 λ 3 , где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z - атомный номер элемента, λ - длина волны рентгеновских лучей.

Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z =20 для кальция и Z =15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.

Известно, что пищеварительные органы имеют такую же величину коэффициента поглощения, как и другие мягкие ткани. Но тень пищевода, желудка и кишечника можно различить, если пациент примет внутрь контрастное вещество - сернокислый барий (Z= 56 для бария). Сернокислый барий очень непрозрачен для рентгеновских лучей и часто используется для рентгенологического обследования желудочно-кишечного тракта. Определенные непрозрачные смеси вводят в кровяное русло для того, чтобы исследовать состояние кровеносных сосудов, почек и т.п. Как контрастное вещество в этом случае используют йод, атомный номер которого составляет 53.

Зависимость поглощения рентгеновских лучей от Z используют также для защиты от возможного вредного действия рентгеновского излучения. Для этой цели применяют свинец, величина Z для которого равна 82.

Применение рентгеновского излучения в медицине

Причиной применения рентгеновского излучения в диагностике послужила их высокая проникающая способность, одно из основных свойств рентгеновского излучения . В первое время после открытия, рентгеновское излучение использовалось по большей части, для исследования переломов костей и определения местоположения инородных тел (например, пуль) в теле человека. В настоящее время применяют несколько методов диагностики с помощью рентгеновских лучей (рентгенодиагностика).

Рентгеноскопия . Рентгеновский прибор состоит из источника рентгеновских лучей (рентгеновской трубки) и флуоресцирующего экрана. После прохождения рентгеновских лучей через тело пациента врач наблюдает теневое его изображение. Между экраном и глазами врача должно быть установлено свинцовое окно для того, чтобы защитить врача от вредного действия рентгеновских лучей. Этот метод дает возможность изучить функциональное состояние некоторых органов. Например, врач непосредственно может пронаблюдать движения легких, прохождение контрастного вещества по желудочно-кишечному тракту. Недостатки этого метода - недостаточно контрастные изображения и сравнительно большие дозы излучения, получаемые пациентом во время процедуры.

Флюорография . Этот метод состоит в получении фотографии с изображением части тела пациента. Используют, как правило, для предварительного исследования состояния внутренних органов пациентов с помощью малых доз рентгеновского излучения.

Рентгенография. (Радиография рентгеновских лучей). Это метод исследования с помощью рентгеновских лучей, в ходе которого изображение записывается на фотографическую пленку. Фотографии делаются обычно в двух перпендикулярных плоскостях. Этот метод имеет некоторые преимущества. Рентгеновские фотографии содержат больше деталей, чем изображение на флуоресцентном экране, и потому они являются более информативными. Они могут быть сохранены для дальнейшего анализа. Общая доза излучения меньше, чем применяемая в рентгеноскопии.

Компьютерная рентгеновская томография . Оснащенный вычислительной техникой осевой томографический сканер является наиболее современным аппаратом рентгенодиагностики, который позволяет получить четкое изображение любой части человеческого тела, включая мягкие ткани органов.

Первое поколение компьютерных томографов (КT) включает специальную рентгеновскую трубку, которая прикреплена к цилиндрической раме. На пациента направляют тонкий пучок рентгеновских лучей. Два детектора рентгеновских лучей прикреплены к противоположной стороне рамы. Пациент находится в центре рамы, которая может вращаться на 180 0 вокруг его тела.

Рентгеновский луч проходит через неподвижный объект. Детекторы получают и записывают показатели поглощения различных тканей. Записи делают 160 раз, пока рентгеновская трубка перемещается линейно вдоль сканируемой плоскости. Затем рама поворачивается на 1 0 , и процедура повторяется. Запись продолжается, пока рама не повернется на 180 0 . Каждый детектор записывает 28800 кадров (180x160) в течение исследования. Информация обрабатывается компьютером, и посредством специальной компьютерной программы формируется изображение выбранного слоя.

Второе поколение КT использует несколько пучков рентгеновских лучей и до 30 их детекторов. Это дает возможность ускорить процесс исследования до 18 секунд.

В третьем поколении КT используется новый принцип. Широкий пучок рентгеновских лучей в форме веера перекрывает исследуемый объект, и прошедшее сквозь тело рентгеновское излучение записывается несколькими сотнями детекторов. Время, необходимое для исследования, сокращается до 5-6 секунд.

КТ имеет множество преимуществ по сравнению с более ранними методами рентгенодиагностики. Она характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.

Основные свойства рентгеновского излучения

1. Большая проникающая и ионизирующая способность.

2. Не отклоняются электрическим и магнитным полем.

3. Обладают фотохимическим действием.

4. Вызывают свечение веществ.

5. Отражение, преломление и дифракция как у видимого излучения.

6. Оказывают биологическое действие на живые клетки.

1. Взаимодействие с веществом

Длина волны рентгеновских лучей сравнима с размерами атомов, поэтому не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей. В частности выяснилось, что их хорошо отражает алмаз.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z³λ³, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения (фотоэффекта) и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Рентгеновский фотон может взаимодействовать не только со связанными электронами, но и со свободными, а также слабосвязанными электронами. Происходит рассеяние фотонов на электронах - т. н. комптоновское рассеяние. В зависимости от угла рассеяния, длина волны фотона увеличивается на определённую величину и, соответственно, энергия уменьшается. Комптоновское рассеяние, по сравнению с фотопоглощением, становится преобладающим при более высоких энергиях фотона.

В дополнение к названным процессам существует ещё одна принципиальная возможность поглощения - за счёт возникновения электрон-позитронных пар. Однако для этого необходимы энергии более 1,022 МэВ, которые лежат вне вышеобозначенной границы рентгеновского излучения (<250 кэВ). Однако при другом подходе, когда "ренгеновским" называется излучение, возникшее при взаимодействии электрона и ядра или только электронов, такой процесс имеет место быть. Кроме того, очень жесткое рентгеновское излучение с энергией кванта более 1 МэВ, способно вызвать Ядерный фотоэффект.

[править]

2. Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

[править]

3. Регистрация

Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивает светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.

Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30-100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.

В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.

Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентген). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией.

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ). Известным примером является определение структуры ДНК.



Кроме того, при помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы, позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20-60 кв и кожно-фокусном расстоянии 3-7 см (короткодистанционная рентгенотерапия) или при напряжении 180-400 кв и кожно-фокусном расстоянии 30-150 см (дистанционная рентгенотерапия).

Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

[править]

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

Современная медицина использует множество медиков диагностики и терапии. Некоторые из них применяют сравнительно недавно, другие же практикуют на протяжении не одного десятка и даже сотни лет. Также еще сто десять лет назад Вильям Конрад Рентген обнаружил удивительные Х-лучи, которые вызвали значительный резонанс в научном и медицинском мире. И сейчас медики всего планеты используют их в своей практике. Темой нашего сегодняшнего разговора станут рентгеновские лучи в медицине, обсудим их применение чуть более подробно.

Рентгеновские лучи являются одной из разновидностей электромагнитного излучения. Они характеризуются значительными проникающими качествами, которые зависят длины волны излучения, а также от плотности и толщины облучаемых материалов. Кроме того рентгеновские лучи способны вызывать свечение ряда веществ, влиять на живые организмы, ионизировать атомы, а также катализировать некоторые фотохимические реакции.

Применение лучей Рентгена в медицине

На сегодняшний день свойства рентгеновских лучей позволяют широко применять их в рентгенодиагностике и рентгенотерапии.

Рентгенодиагностика

К рентгенодиагностике прибегают при проведении:

Рентгеноскопии (просвечивания);
- рентгенографии (снимка);
- флюорографии;
- рентгеновской и компьютерной томографии.

Рентгеноскопия

Для проведения такого исследования пациенту необходимо расположиться между трубкой рентгена и особенным флуоресцирующим экраном. Специалист-рентгенолог подбирает необходимую жесткость Х-лучей, получая на экране картинку внутренних органов, а также ребер.

Рентгенография

Для проведения данного исследования пациента укладывают на кассету, в которой находится специальная фотопленка. Рентгеновский аппарат при этом располагают непосредственно над объектом. В результате на пленке появляется негативное изображение внутренних органов, которое содержит ряд мелких деталей, более подробных, чем при проведении рентгеноскопического обследования.

Флюорография

Данное исследование осуществляют при проведении массовых медосмотров населения, в том числе и для выявления туберкулеза. При этом на особенную пленку проецируют картинку с крупного экрана.

Томография

При проведении томографии компьютерные лучи помогают получить снимки органов сразу в нескольких местах: в специально подобранных поперечных срезах ткани. Такая серия рентгеновских снимков носит название томограммы.

Компьютерная томограмма

Такое исследование позволяет регистрировать срезы тела человека путем применения рентгеновского сканера. После данные заносят в компьютер, получая одну картинку в поперечном сечении.

Каждый из перечисленных методов диагностики основан на свойствах рентгеновского луча засвечивать фотопленку, а также на том, что ткани и костный скелет человека отличаются различной проницаемостью к их воздействию.

Рентгенотерапия

Способность рентгеновских лучей влиять особенным образом на ткани применяется для терапии опухолевых формирований. При этом ионизирующие качества данного излучения особенно активно заметны при воздействии на клеточки, которые способны к быстрому делению. Как раз этими качествами отличаются клетки злокачественных онкологических формирований.

Тем не менее, стоит отметить, что рентгенотерапия способна вызывать массу серьезных побочных эффектов. Такое воздействие агрессивно сказывается на состоянии кроветворной, эндокринной и иммунной системы, клетки которых также очень быстро делятся. Агрессивное влияние на них способно вызывать признаки лучевой болезни.

Влияние рентгеновского излучения на человека

Во время исследования рентгеновских лучей, медики выяснили, что они могут приводить к изменениям в кожном покрове, которые напоминают солнечный ожог, однако сопровождаются более глубокими повреждениями кожи. Подобные изъязвления заживают крайне долго. Ученые выяснили, что таких поражений можно избежать путем снижения времени и дозы облучения, а также при помощи специальной экранировки и методов дистанционного управления.

Агрессивное влияние рентгеновских лучей может проявляться и в долгосрочной перспективе: временными либо постоянными изменениями в составе крови, подверженностью лейкемии и раннему старению.

Влияние рентгена на человека зависит от многих факторов: от того, какой орган облучают, и как долго. Облучение органов кроветворения может привести к недугам крови, а воздействие на половые органы – к бесплодию.

Проведение систематического облучения чревато развитием генетических изменений в организме.

Реальный вред рентгеновских лучей при рентгенодиагностике

При проведении обследования врачи применяют минимально возможное количество рентгеновских лучей. Все дозы облучения соответствуют определенным допустимым стандартам и не могут навредить человеку. Значительную опасность рентгенодиагностика представляет лишь для врачей, которые ее проводят. И то современные методы защиты помогают уменьшить агрессию лучей до минимума.

К самым безопасным методам рентгенодиагностики относят рентгенографию конечностей, а также стоматологический рентген. На следующем месте этого рейтинга находится маммография, за ней – компьютерная томография, а после – рентгенография.

Чтобы применение рентгеновских лучей в медицине приносило лишь пользу человеку, нужно проводить исследования с их помощью только по показаниям.


Top