Кислород получают с помощью реакции. Кислород и его получение

Укрепим пробирку из тугоплавкого стекла на штативе и внесем в нее 5 г порошкообразной селитры (нитрата калия КNО 3 или нитрата натрия NaNO 3). Поставим под пробирку чашку из огнеупорного материала, наполненную песком, так как при этом опыте стекло часто плавится и вытекает горячая масса. Поэтому и горелку при нагревании будем держать сбоку. Когда мы сильно нагреем селитру, она расплавится и из нее выделится кислород (обнаружим это с помощью тлеющей лучины - она воспламенится в пробирке). При этом нитрат калия перейдет в нитрит KNO2. Бросим затем тигельными щипцами или пинцетом кусок черенковой серы в расплав (никогда не держать лицо над пробиркой).

Сера воспламенится и сгорит с выделением большого количества тепла. Опыт следует проводить при открытых окнах (из-за получающихся окислов серы). Полученный нитрит натрия сохраним для последующих опытов.

Процесс протекает следующим образом (через нагревание):

2KNO 3 → 2KNO 2 + O 2

Можно получить кислород и другими методами.

Перманганат калия КMnO 4 (калийная соль марганцевой кислоты) отдает при нагревании кислород и превращается при этом в оксид марганца (IV):

4KMnO 4 → 4Mn 2 + 2K 2 O + 3O 2

или 4KMnO 4 → MnO 2 + K 2 MnO 4 + O 2

Из 10 г перманганата калия можно получить примерно литр кислорода, значит двух граммов достаточно, чтобы наполнить кислородом пять пробирок нормальной величины. Перманганат калия можно приобрести в любой аптеке, если он отсутствует в домашней аптечке.

Некоторое количество перманганата калия нагреем в тугоплавкой пробирке и уловим в пробирки выделяющийся лислород с помощью пневматической ванны. Кристаллы, растрескиваясь, разрушаются, и, зачастую, некоторое количество пылеобразного перманганата увлекается вместе с газом. Вода в пневматической ванне и отводной трубке в этом случае окрасится в красный цвет. После окончания опыта очистим ванну и трубку раствором тиосульфата (гипосульфита) натрия - фотофиксажа, который немного подкислим разбавленной соляной кислотой.

В больших количествах кислород можно также получить из пероксида (перекиси) водорода Н 2 О 2 . Купим в аптеке трехпроцентный раствор - дезинфицирующее средство или препарат для обработки ран. Пероксид водорода мало устойчив. Уже при стоянии на воздухе он разлагается на кислород и воду:

2Н 2 О 2 → 2Н 2 О + О 2

Разложение можно существенно ускорить, если добавить к пероксиду немного диоксида марганца МnО 2 (пиролюзита), активного угля, металлического порошка, крови (свернувшейся или свежей), слюны. Эти вещества действуют как катализаторы.

Мы можем в этом убедиться, если в маленькую пробирку поместим примерно 1 мл пероксида водорода с одним из названных веществ, а наличие выделяющегося кислорода установим с помощью пробы лучинкой. Если в химическом стакане к 5 мл трехпроцентного раствора пероксида водорода добавить равное количество крови животного, то смесь сильно вспенится, пена застынет и вздуется в результате выделения пузырьков кислорода.

Затем испытаем каталитическое действие 10 %-ного раствора сульфата меди (II) с добавкой гидроксида калия (едкого кали), раствора сульфата железа (П), раствора хлорида железа (III) (с добавкой железного порошка и без него), карбоната натрия, хлорида натрия и органических веществ (молока, сахара, размельченных листьев зеленых растений и т. д.). Теперь мы на опыте убедились, что различные вещества каталитически ускоряют разложение пероксида водорода.

Катализаторы повышают скорость реакции химического процесса и при этом сами не расходуются. В конечном итоге они снижают энергию активации, необходимую для возбуждения реакции. Но существуют и вещества, действующие противоположным образом. Их называют отрицательными катализаторами, антикатализаторами, стабилизаторами или ингибиторами. Например, фосфорная кислота препятствует разложению пероксида водорода. Поэтому продажный раствор пероксида водорода обычно стабилизирован фосфорной или мочевой кислотой.

Катализаторы необходимы для многих химико-технологических процессов. Но и в живой природе во многих процессах участвуют так называемые биокатализаторы (энзимы, ферменты, гормоны). Так как катализаторы не потребляются в реакциях, то они могут действовать уже в малых количествах. Одного грамма сычужного фермента достаточно, чтобы обеспечить свертывание 400-800 кг молочного белка.

Особое значение для работы катализаторов имеет величина их поверхности. Для увеличения поверхности применяют пористые, испещренные трещинами вещества с развитой внутренней поверхностью, напыляют компактные вещества или металлы на так называемые носители. Например, 100 г платинового катализатора на носителе содержит только около 200 мг платины; 1 г компактного никеля имеет поверхность 0,8 см 2 , а 1 г порошка никеля - 10 мг. Это соответствует отношению 1: 100000; 1 г активного глинозема обладает поверхностью от 200 до 300 м 2 , для 1 г активного угля эта величина составляет даже 1000 м2. В некоторых установках катализатора - на несколько миллионов марок. Так, бензиновая контактная печь в Белене высотой 18 м содержит 9-10 тонн катализатора.

Открытие кислорода ознаменовало новый период в развитии химии. С глубокой древности было известно, что для горения необходим воздух. Процесс горения веществ долгое время оставался непонятным. В эпоху алхимии широкое распространение получила теория флогистона, согласно которой вещества горят благодаря их взаимодействию с огненной материей, то есть с флогистоном, который содержится в пламени.

Кислород был получен английским химиком Джозефом Пристли в 70-х годах XVIII века. Химик нагревал красный порошок оксида ртути (II), в итоге вещество разлагалось, с образованием металлической ртути и бесцветного газа:

2HgO t° → 2Hg + O2

Оксиды – бинарные соединения, в состав которых входит кислород

При внесении тлеющей лучины в сосуд с газом она ярко вспыхивала. Ученый считал, что тлеющая лучина вносит в газ флогистон, и он загорается.

Д. Пристли пробовал дышать полученным газом, и был восхищен тем, как легко и свободно им дышится. Тогда ученый и не предполагал, что удовольствие дышать этим газом предоставлено каждому.

Результатами своих опытов Д. Пристли поделился с французским химиком Антуаном Лораном Лавуазье. Имея хорошо оснащенную на то время лабораторию, А. Лавуазье повторил и усовершенствовал опыты Д. Пристли.

А. Лавуазье измерил количество газа, выделяющееся при разложении определенной массы оксида ртути. Затем химик нагрел в герметичном сосуде металлическую ртуть до тех пор, пока она не превратилась в оксид ртути (II). Он обнаружил, что количество выделившегося газа в первом опыте равно газу, поглотившемуся во втором опыте. Следовательно, ртуть реагирует с каким-то веществом, содержащимся в воздухе. И это же вещество выделяется при разложении оксида. Лавуазье первым сделал вывод, что флогистон здесь совершенно ни при чем, и горение тлеющей лучины вызывает именно неизвестный газ, который в последствии был назван кислородом. Открытие кислорода ознаменовало крах теории флогистона!

Способы получения и собирания кислорода в лаборатории

Лабораторные способы получения кислорода весьма разнообразны. Существует много веществ, из которых можно получить кислород. Рассмотрим наиболее распространенные способы.

1) Разложение оксида ртути (II)

Одним из способов получения кислорода в лаборатории, является его получение по описанной выше реакции разложения оксида ртути (II). Ввиду высокой токсичности соединений ртути и паров самой ртути, данный способ используется крайне редко.

2) Разложение перманганата калия

Перманганат калия (в быту мы называем его марганцовкой) – кристаллическое вещество темно-фиолетового цвета. При нагревании перманганата калия выделяется кислород.

В пробирку насыплем немного порошка перманганата калия и закрепим ее горизонтально в лапке штатива. Недалеко от отверстия пробирки поместим кусочек ваты. Закроем пробирку пробкой, в которую вставлена газоотводная трубка, конец которой опустим в сосуд- приемник. Газоотводная трубка должна доходить до дна сосуда-приемника.

Ватка, находящаяся около отверстия пробирки нужна, чтобы предотвратить попадание частиц перманганата калия в сосуд-приемник (при разложении выделяющийся кислород увлекает за собой частички перманганата).

Когда прибор собран, начинаем нагревание пробирки. Начинается выделение кислорода.

Уравнение реакции разложения перманганата калия:

2KMnO4 t° → K2MnO4 + MnO2 + O2

Как обнаружить присутствие кислорода? Воспользуемся способом Пристли. Подожжем деревянную лучину, дадим ей немного погореть, затем погасим, так, чтобы она едва тлела. Опустим тлеющую лучину в сосуд с кислородом. Лучина ярко вспыхивает!

Газоотводная трубка была не случайно опущена до дна сосуда-приемника. Кислород тяжелее воздуха, следовательно, он будет собираться в нижней части приемника, вытесняя из него воздух.

Кислород можно собрать и методом вытеснения воды. Для этого газоотводную трубку необходимо опустить в пробирку, заполненную водой, и опущенную в кристаллизатор с водой вниз отверстием. При поступлении кислорода газ вытесняет воду из пробирки.

Разложение пероксида водорода

Пероксид водорода – вещество всем известное. В аптеке оно продается под названием «перекись водорода». Данное название является устаревшим, более правильно использовать термин «пероксид». Химическая формула пероксида водорода Н2О2

Пероксид водорода при хранении медленно разлагается на воду и кислород. Чтобы ускорить процесс разложения можно произвести нагрев или применить катализатор.

Катализатор – вещество, ускоряющее скорость протекания химической реакции

Нальем в колбу пероксид водорода, внесем в жидкость катализатор. Катализатором может служить порошок черного цвета – оксид марганца MnO2. Тотчас смесь начнет вспениваться вследствие выделения большого количества кислорода. Внесем в колбу тлеющую лучину – она ярко вспыхивает. Уравнение реакции разложения пероксида водорода:

2H2O2 MnO2 → 2H2O + O2

Обратите внимание: катализатор, ускоряющий протекание реакции, записывается над стрелкой, или знаком «=», потому что он не расходуется в ходе реакции, а только ускоряет ее.

Разложение хлората калия

Хлорат калия – кристаллическое вещество белого цвета. Используется в производстве фейерверков и других различных пиротехнических изделий. Встречается тривиальное название этого вещества – «бертолетова соль». Такое название вещество получило в честь французского химика, впервые синтезировавшего его, – Клода Луи Бертолле. Химическая формула хлората калия KСlO3.

При нагревании хлората калия в присутствии катализатора – оксида марганца MnO2 , бертолетова соль разлагается по следующей схеме:

2KClO3 t°, MnO2 → 2KCl + 3O2.

Разложение нитратов

Нитраты – вещества, содержащие в своем составе ионы NO3⎺. Соединения данного класса используются в качестве минеральных удобрений, входят в состав пиротехнических изделий. Нитраты – соединения термически нестойкие, и при нагревании разлагаются с выделением кислорода:

Обратите внимание, что все рассмотренные способы получения кислорода схожи. Во всех случаях кислород выделяется при разложении более сложных веществ.

Реакция разложения

В общем виде реакцию разложения можно описать буквенной схемой:

АВ → А + В.

Реакции разложения могут протекать при действии различных факторов. Это может быть нагревание, действие электрического тока, применение катализатора. Существуют реакции, в которых вещества разлагаются самопроизвольно.

Получение кислорода в промышленности

В промышленности кислород получают путем выделения его из воздуха. Воздух – смесь газов, основные компоненты которой представлены в таблице.

Сущность этого способа заключается в глубоком охлаждении воздуха с превращением его в жидкость, что при нормальном атмосферном давлении может быть достигнуто при температуре около -192°С . Разделение жидкости на кислород и азот осуществляется путем использования разности температур их кипения, а именно: Ткип. О2 = -183°С; Ткип.N2 = -196°С (при нормальном атмосферном давлении).

При постепенном испарении жидкости в газообразную фазу в первую очередь будет переходить азот, имеющий более низкую температуру кипения, и, по мере его выделения, жидкость будет обогащаться кислородом. Многократное повторение этого процесса позволяет получить кислород и азот требуемой чистоты. Такой способ разделения жидкостей на составные части называется ректификацией жидкого воздуха.

  • В лаборатории кислород получают реакциями разложения
  • Реакция разложения – реакция, в результате которой сложные вещества разлагаются на более простые
  • Кислород можно собрать методом вытеснения воздуха или методом вытеснения воды
  • Для обнаружения кислорода используют тлеющую лучину, она ярко вспыхивает в нем
  • Катализатор – вещество, ускоряющее химическую реакцию, но не расходующееся в ней

В атмосферном воздухе кислород занимает 21%. Большая часть его находится в земной коре, пресной воде и живых микроорганизмах. Он применяется во многих сферах промышленности и задействуется для хозяйственных и медицинских потребностей. Востребованность вещества обусловлена химическими и физическими особенностями.

Как добывают кислород в промышленности. 3 метода

Производство кислорода в промышленности осуществляется за счет деления атмосферного воздуха. Для этого задействуются следующие методы:

Производство кислорода в промышленных масштабах несет в себе высокую значимость. К выбору технологии и соответствующего оборудования нужно уделить повышенное вынимание. Допущенные ошибки могут негативно отразиться на технологичном процессе и повлечь за забой увеличение затрат.

Технические особенности оборудования для получения кислорода в промышленности

Наладить процесс получения кислорода в газообразном состоянии помогают генераторы промышленного типа «ОКСИМАТ». Их технические характеристики и конструктивные особенности направлены на получение данного вещества в промышленности необходимой чистоты и требуемом количестве на протяжении суток (без перерыва). Следует учесть, что работать оборудование может в любом режиме как с остановками, так и без них. Агрегат функционирует под давлением. На входе должен быть осушенный воздух в сжатом состоянии очищенный от влаги. Предусматриваются модели малой, средней и большой производительности.

Здравствуйте.. Сегодня я расскажу Вам о кислороде и о способах его получения. Напоминаю, если у Вас будут ко мне вопросы, Вы можете писать их в комментариях к статье. Если же Вам понадобиться любая помощь по химии, . Буду рад Вам помочь.

Кислород распространён в природе в виде изотопов 16 О, 17 О, 18 О, которые имеют следующее процентное содержание на Земле – 99,76%, 0,048%, 0,192% соответственно.

В свободном состоянии кислород находится в виде трёх алло-тропных модификаций : атомарного кислорода - О о, дикислорода – О 2 и озона – О 3 . Причём, атомарный кислород может быть получен следующим образом:

КClO 3 = KCl + 3O 0

KNO 3 = KNO 2 + O 0

Кислород входит в состав более 1400 различных минералов и органических веществ, в атмосфере его содержание составляет 21% по объёму. А в человеческом теле содержится до 65% кислорода. Кислород газ без цвета и запаха, мало растворим в воде (в 100 объёмах воды при 20 о С растворяется 3 объёма кислорода).

В лаборатории кислород получают умеренным нагреванием некоторых веществ:

1) При разложении соединений марганца (+7) и (+4):

2KMnO 4 → K 2 MnO 4 + MnO 2 + O 2
перманганат манганат
калия калия

2MnO 2 → 2MnO + O 2

2) При разложении перхлоратов:

2KClO 4 → KClO 2 + KCl + 3O 2
перхлорат
калия

3) При разложении бертолетовой соли (хлората калия) .
При этом образуется атомарный кислород:

2KClO 3 → 2 KCl + 6O 0
хлорат
калия

4) При разложении на свету солей хлорноватистой кислоты - гипохлоритов:

2NaClO → 2NaCl + O 2

Ca(ClO) 2 → CaCl 2 + O 2

5) При нагревании нитратов.
При этом образуется атомарный кислород. В зависимости от того, какое положение в ряду активности занимает металл нитрата, образуются различные продукты реакции:

2NaNO 3 → 2NaNO 2 + O 2

Ca(NO 3) 2 → CaO + 2NO 2 + O 2

2AgNO 3 → 2 Ag + 2NO 2 + O 2

6) При разложении пероксидов:

2H 2 O 2 ↔ 2H 2 O + O 2

7) При нагревании оксидов неактивных металлов:

2Аg 2 O ↔ 4Аg + O 2

Данный процесс имеет актуальное значение в быту. Дело в том, что посуда, изготовленная из меди или серебра, имея естественный слой оксидной плёнки, при нагревании образует активный кислород, что является антибактериальным эффектом. Растворение солей неактивных металлов, особенно нитратов, также приводит к образованию кислорода. Например, суммарный процесс растворения нитрата серебра можно представить по этапам:

AgNO 3 + H 2 O → AgOH + HNO 3

2AgOH → Ag 2 O + O 2

2Ag 2 O → 4Ag + O 2

или в суммарном виде:

4AgNO 3 + 2H 2 O → 4Ag + 4HNO 3 + 7O 2

8) При нагревании солей хрома высшей степени окисления:

4K 2 Cr 2 O 7 → 4K 2 CrO 4 + 2Cr 2 O 3 + 3 O 2
бихромат хромат
калия калия

В промышленности кислород получают:

1) Электролитическим разложением воды:

2Н 2 О → 2Н 2 + О 2

2) Взаимодействием углекислого газа с пероксидами:

СО 2 + К 2 О 2 →К 2 СО 3 + О 2

Данный способ представляет собой незаменимое техническое решение проблемы дыхания в изолированных системах: подводных лодках, шахтах, космических аппаратах.

3) При взаимодействии озона с восстановителями:

О 3 + 2КJ + H 2 O → J 2 + 2KOH + O 2


Особое значение получение кислорода имеет место в процессе фотосинтеза
, происходящего в растениях. Кардинальным образом от этого процесса зависит вся жизнь на Земле. Фотосинтез – сложный многоступенчатый процесс. Начало ему даёт свет. Сам фотосинтез состоит из двух фаз: световой и темновой. В световую фазу пигмент хлорофилл, содержащийся в листьях растений, образует так называемый «светопоглощающий» комплекс», который отнимает электроны у воды, и тем самым расщепляет её на ионы водорода и кислород:

2Н 2 О = 4е + 4Н + О 2

Накопившиеся протоны способствуют синтезу АТФ:

АДФ + Ф = АТФ

В темновую фазу происходит преобразование углекислого газа и воды в глюкозу. И побочно выделяется кислород:

6СО 2 + 6Н 2 О = С 6 Н 12 О 6 + О 2

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На сегодня вопрос экологии выходит на первый план. Но здоровая экология невозможна без кислорода. Именно он является основным кирпичиком поддержания жизни на планете . Кроме этого, кислород часто участвует во многих химических реакциях. Давайте рассмотрим, как получить кислород в условиях химической лаборатории.

Чтобы получить кислород укрепим пробирку из тугоплавкого стекла на штативе и внесем в нее 5 г порошкообразной (нитрата калия KNO 3 или нитрата натрия NaNO 3). Поставим под пробирку чашку из огнеупорного материала, наполненную песком, так как при этом опыте часто плавится и вытекает горячая масса. Поэтому и горелку при нагревании будем держать сбоку. Когда мы сильно нагреем селитру, она расплавится и из нее выделится кислород (обнаружим это с помощью тлеющей лучины – она воспламенится в пробирке). При этом нитрат калия перейдет в нитрит KNO 2 . Бросим затем тигельными щипцами или пинцетом кусок черенковой в расплав (никогда не держать лицо над пробиркой). Сера воспламенится и сгорит с выделением большого количества тепла. Опыт следует проводить при открытых окнах (из-за получающихся окислов серы).

Процесс протекает следующим образом (нагревание):

2KNO 3 → 2KNO 2 + О 2

Получить кислород можно и другими методами. Перманганат калия КМnО 4 отдает при нагревании кислород и превращается при этом в оксид марганца (4):

2КМnO 4 → МnO 2 + К 2 МnО 4 + O 2 .

Из 10 г перманганата калия можно получить примерно литр кислорода, значит двух граммов достаточно, чтобы наполнить кислородом пять пробирок нормальной величины.

Некоторое количество перманганата калия нагреем в тугоплавкой пробирке и уловим в пробирки выделяющийся кислород с помощью пневматической ванны. Кристаллы, растрескиваясь, разрушаются, и, зачастую некоторое количество пылеобразного перманганата увлекается вместе с газом. Вода в пневматической ванне и отводной трубке в этом случае окрасится в красный .

В больших количествах получить кислород можно также из пероксида (перекиси) водорода Н 2 О 2 . Пероксид водорода мало устойчив. Уже при стоянии на воздухе он разлагается на кислород и :

2Н 2 O 2 → 2H 2 O + О 2

Получить кислород можно существенно быстрее, если добавить к пероксиду немного диоксида марганца МnО 2 , активного угля, металлического порошка, крови (свернувшейся или свежей), слюны. Эти вещества действуют как катализаторы .

Мы можем в этом убедиться, если в маленькую пробирку поместим примерно 1 мл пероксида водорода с одним из названных веществ, а наличие выделяющегося кислорода установим с помощью пробы лучинкой. Если в химическом стакане к 5 мл трехпроцентного раствора пероксида водорода добавить равное количество крови животного, то смесь сильно вспенится, пена застынет и вздуется в результате выделения пузырьков кислорода.

Катализаторы повышают скорость реакции химического процесса и при этом сами не расходуются. В конечном итоге они снижают энергию активации, необходимую для возбуждения реакции. Но существуют и вещества, действующие противоположным образом. Их называют отрицательными катализаторами или ингибиторами . Например, фосфорная кислота препятствует разложению пероксида водорода. Поэтому продажный раствор пероксида водорода обычно стабилизирован фосфорной или мочевой кислотой. В живой природе во многих процессах участвуют так называемые биокатализаторы (энзимы, гормоны).


Top