Определение числовой функции и способы её задания. Числовые функции

А описание большинства этих моделей на математическом языке так или иначе связано с функциями. Но в математике действует закон: если используется какой-то термин, то его надо точно определить. За два года изучения курса алгебры мы с вами накопили достаточно много примеров, подтверждающих этот закон. Так, в 7-м классе мы ввели термин «степень с натуральным показателем», точно его определив: «под a 2 , где n = 2, 3, 4, ... , понимается произведение n множителей, каждый из которых равен о; под а 1 понимается само число а». В 8-м классе мы ввели термин «квадратный корень из неотрицательного числа», дав ему точное определение: это такое неотрицательное число, квадрат которого равен a». И так далее и тому подобное - вы сами можете привести аналогичные примеры.

В то же время были случаи, когда мы вводили термин и начинали им пользоваться, но точного определения не формулировали, ограничиваясь приблизительным истолкованием термина. Так было, в частности, с термином «функция». Почему же мы в 7-м классе, как только стали использовать понятие функции, не сформулировали точное определение, почему не сделали этого и в 8-м классе?

Дело в том, что история развития математики показывает: были понятия, которые человечество активно и длительное время использовало как рабочий инструмент, не задумываясь о том, как его определить. Лишь накопив необходимый опыт в работе с тем или иным понятием, математики начинали думать о его формальном определении. Разумеется, не всегда первые попытки определить то или иное понятие, вроде бы ясное на интуитивном уровне, оказывались удачными, их приходилось впоследствии дополнять, уточнять. Так было и с понятием функции .

Проанализируем наш опыт работы с термином «функция». В 7-м классе мы ввели термин «линейная функция», понимая под этим уравнение с двумя переменными специального вида у = кх + m и рассматривая переменные хи у как неравноправные: х - независимая переменная, у - зависимая переменная. Затем задались вопросом: а не встречаются ли при описании реальных процессов математические модели подобного вида, но такие, у которых у выражается через х не по формуле у = кх + m, а по какой-либо иной формуле? Ответ на этот вопрос был получен сразу: встречаются. В 7-м классе, кроме упомянутой линейной функции, мы изучили математическую модель у = х 2 , в 8-м классе добавили к ним модели
Постепенно мы начали осознавать, что, изучая какой-либо реальный процесс, обычно обращают внимание на две переменные величины, участвующие в нем (в более сложных процессах участвуют более двух величин, но мы такие процессы пока не рассматривали). Одна из них меняется как бы сама по себе, независимо ни от чего (такую переменную чаще всего обозначают буквой x), а другая переменная принимает значения, каждое из которых каким-то образом зависит от выбранного значения переменной х (такую зависимую переменную чаще всего обозначают буквой у). Математической моделью реального процесса как раз и является запись на математическом языке зависимости у от х: у = fх). Такие математические модели мы называли функциями.

Математическая модель у = f(х) обычно дополняется указанием на то, из какого числового множества берутся значения независимой переменной х. Например, мы говорили о функции , подразумевая, что (график функции изображен на рис. 42), но мы рассматривали и функцию (график функции изображен на рис. 43). Это разные математические модели, значит, и разные функции.


Использование математической модели вида у = f(x) оказывается удобным во многих случаях, в частности тогда, когда реальный процесс описывается различными формулами на разных промежутках изменения независимой переменной. Вот одна из таких функций: у = g {х), где
изображен на рис. 44. Помните, как строить такие графики? Сначала надо построить параболу у = х 2 и взять ее часть при (левая ветвь параболы), затем построить прямую у = 2х и взять ее часть при х > 0. И, наконец, надо обе выделенные части объединить на одном рисунке, т.е. построить в одной координатной плоскости. Этот пример (или аналогичные) мы рассматривали и в 7-м, и в 8-м классах.


Так что же такое функция? Проведенный выше анализ и наш опыт изучения конкретных функций в 7-м и 8-м классах позволяют выделить два существенных момента.

1. Запись у = f(х) представляет собой правило (обычно говорят «правило f»), с помощью которого, зная конкретное значение независимой переменной х, можно найти соответствующее значение переменной у.

2. Указывается числовое множество X (чаще всего какой-то числовой промежуток), откуда берутся значения независимой переменной х.

Теперь мы можем сформулировать одно из главных определений школьного курса алгебры (да, пожалуй, и всей математики).

Определение 1.

Если даны числовое множество X и правило f, позволяющее поставить в соответствие каждому элементу х из множества X определенное число у, то говорят, что задана функция у = f(х) с областью определения X; пишут у = f(x), х є X. При этом переменную х называют независимой переменной или аргументом, а переменную у - зависимой переменной.

Замечание.

В реальной жизни мы часто говорим: «каковы мои функции» или «каковы мои функциональные обязанности», - спрашивая тем самым соответственно: «каков круг моих действий, моих обязанностей» или «что я должен делать, как действовать». Фактически в реальной жизни слово «функция» означает «действие» или «правила действий». Обратите внимание, что фактически тот же смысл имеет и математический термин «функция», который мы разъяснили выше в определении 1.

Итак, D(f) = (-оо, 4].

б) Значение х = - 2 удовлетворяет условию следовательно, f (-2) надо вычислять по первой строке задания функции. Имеем f(х) = -х 2 , значит, f (-2) = -(-2) 2 = - 4.


в) Область значений функции, как мы уже отметили выше, удобнее всего находить с помощью графика функции. Построение графика осуществим «по кусочкам». Сначала построим параболу у = -х 2 и выделим ее часть на луче (-оо, 0] (рис. 46). Затем построим прямую у = х + 1 и выделим ее часть на полуинтервале (0, 2] (рис. 47). Далее построим прямую у - 3 и выделим ее часть на полуинтервале (2, 4] (рис. 48). Наконец, все три «кусочка» изобразим в одной системе координат - это и будет график функции у = f (х) (рис. 49).


Теперь хорошо видно, что область значений функции состоит из двух промежутков: луча (-оо, 0] - он сплошь заполняется ординатами точек ветви параболы у = -х 2 , х < 0 - и полуинтервала (1, 3] - он сплошь заполняется ординатами точек участка прямой у = х+ 1,0<х<2. Итак, Е(f) = (-оо, 0]U(1, 3].

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Что такое функция. Определение. Соответствия, при которых каждому элементу одного множества сопоставляется единственный элемент другого множества называются функциями. Пишут: у = f(x), x Є X. Переменную х называют независимой переменной или аргументом. Множество всех допустимых значений независимой переменной является областью определения функции и обозначается D(y). Переменную у – зависимой переменной. Множество всех значений зависимой переменной является областью значений функции и обозначается Е(у).


Способы задания функции Существуют 4 способа задания функции. 1. Табличный способ. Удобен тем, что позволяет найти значения функции имеющихся в таблице значений аргумента без вычислений. Х2345 У Аналитический способ. Функция задается одной или несколькими формулами. Этот способ незаменим для исследования функции, установления ее свойств. У=2 х+5, у= х² -5 х+1, у= |х+5|. 3. Графический способ. Функция задается своей геометрической моделью на координатной плоскости. 4. Описательный способ. Удобно использовать тогда, когда задание другими способами затруднительно.


§3 Свойства функции Монотонность: Возрастание; убывание нули функции (значения аргумента, в которых значение Функции равно нулю) непрерывность периодичность четность нечетность Экстремумы: точка максимума, точка минимума выпуклость Наибольшее и наименьшее значения функции Промежутки знакопостоянства (промежутки, в которых функция принимает только положительные или только отрицательные значения)




О. Функция вида у=к/х, где к 0, называется обратной пропорциональностью. График обратной пропорциональности (гипербола) получается из графика функции у=1/х с помощью растяжения (а при к








Функция у = |х| у=|х |= х, если х 0 -х, если х


0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." class="link_thumb"> 11 Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига. 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> 0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига." title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига."> title="Дробно-линейная функция О. Функция вида называется дробно- линейной, где с>0. О. График дробно-линейной функции- гипербола, получаемая из графика обратной пропорциональности с помощью сдвига.">


Нахождение области определения функции




Множество значений функции 1.у= 2sin²x-cos2x Решение: 2sin²x-cos2x=2sin²x-(1-2sin²x)=4sin²x-1 0 Sin²x 1, -1 4sin²x-1 3 Ответ: -1 у 3 2. у = |cosx| Решение: -1 cosx 1, 0 |cosx| 1, |cosx| 1 1 Ответ: -1 у 1 3. Функция задана графиком. Укажите множество значений этой функции. E(f)=(-2;2] E(f)= [-3;1] E(f)= (-;4]







6.1. Определение числовой функции 70

7.1. Сужение функции 72

7.2. Способы задания функции 73

7.3. Явно или неявно заданные функции 73

7.4. Параметрически заданные функции 75

7.5. График функции 77

7.6. Примеры построения графиков функций 78

7.7. Упражнения для самостоятельной работы 83

Вопросы для самопроверки 85

Глоссарий 85

      1. Определение числовой функции

Обозначения: или
или
или
или
.

где x - это независимая переменная, или аргумент;y - это зависимая переменная, или функция.

Если обозначить через

X – множество числовых значений, которые может принимать переменнаяx ,

Y – множество числовых значений, которые принимает переменнаяy ,

то функциональная зависимость между переменными x иy здесь задает отображение числового множестваX на числовое множествоY , при котором каждому элементу
ставится в соответствие единственный элемент множестваY (рис. 40).

Рис. 40

В отличие от более общего определения функции как отображения множеств, состоящих из элементов любой природы, числовая функция задает отображение множества X , элементами которого являются числа, на множествоY , элементами которого тоже являются числа. Кроме того, далее будем считать, что множествоY - это есть множество значений функции, так что отображение
является сюръекцией.

МножествоX задания функции и множествоY значений функции для числовых функций традиционно называютобластью определения функции (ООФ) иобластью значений функции (ОЗФ) .

Значение функции в точке

Если задано отображение множеств функцией
, то элементы множествX иY называются точками. Символом
обозначается при этом как сама функция, так и элемент
, соответствующий элементуx при этой функциональной зависимости.

Если x 0 - это фиксированное значение аргументаx , то значение функции в точкеx 0 обозначается следующими символами:

или
или
или
.

Например,

;



,
.

      1. Сужение функции

Если есть функция
и рассматривается некоторое подмножествоЕ множестваХ , то отображение
называетсясужением функции f на множество Е .

Пример 1 (сужение функций)

1)
,
- это есть сужение функции
,
на множество
;

2) любая последовательность
есть сужение функции
на множество натуральных чисел; например,
– это есть сужение функции
,
на множество.

Наряду с понятием сужения функции существует и понятие расширения функции.

Пример 2 (расширение функций)

1)
; от этой функции можно перейти к её расширению на множество
:
;

2) от функции
можно перейти к её расширению на множество
, если рассматривать её значения на множестве комплексных чисел, где возможно извлечение корня квадратного из отрицательного числа.

      1. Способы задания функции

1.Аналитический способ задания функции - функция задается математической формулой, связывающей аргумент и функцию. По этой формуле для каждого возможного значения аргумента можно вычислить соответствующее значение функции. При этом нужно различать:

    явное задание функции,

    неявное задание функции,

    параметрическое задание функции.

2.Табличный способ задания функции - используется для функций, заданных на дискретном конечном множестве значений аргумента; записывается обычно в виде следующей таблицы:

3.Графический способ задания функции - задается множество точек координатной плоскости, координаты которых являются соответствующими друг другу значениями аргумента и функции.

4.Описательный способ задания функции – функциональная зависимость описывается словами. Например,
, где- этоцелая часть x , которая определяется как наибольшее целое число, не превышающееx .


Top