Регрессионный анализ - статистический метод исследования зависимости случайной величины от переменных. Регрессионный анализ

Основная цель регрессионного анализа состоит в определении аналитической формы связи, в которой изменение результативного признака обусловлено влиянием одного или нескольких факторных признаков, а множество всех прочих факторов, также оказывающих влияние на результативный признак, принимается за постоянные и средние значения.
Задачи регрессионного анализа :
а) Установление формы зависимости. Относительно характера и формы зависимости между явлениями, различают положительную линейную и нелинейную и отрицательную линейную и нелинейную регрессию.
б) Определение функции регрессии в виде математического уравнения того или иного типа и установление влияния объясняющих переменных на зависимую переменную.
в) Оценка неизвестных значений зависимой переменной. С помощью функции регрессии можно воспроизвести значения зависимой переменной внутри интервала заданных значений объясняющих переменных (т. е. решить задачу интерполяции) или оценить течение процесса вне заданного интервала (т. е. решить задачу экстраполяции). Результат представляет собой оценку значения зависимой переменной.

Парная регрессия - уравнение связи двух переменных у и х: , где y - зависимая переменная (результативный признак); x - независимая, объясняющая переменная (признак-фактор).

Различают линейные и нелинейные регрессии.
Линейная регрессия: y = a + bx + ε
Нелинейные регрессии делятся на два класса: регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, и регрессии, нелинейные по оцениваемым параметрам.
Регрессии, нелинейные по объясняющим переменным:

Регрессии, нелинейные по оцениваемым параметрам: Построение уравнения регрессии сводится к оценке ее параметров. Для оценки параметров регрессий, линейных по параметрам, Используют метод наименьших квадратов (МНК). МНК позволяет получить такие оценки параметров, при которых сумма квадратов отклонений фактических значений результативного признака у от теоретических минимальна, т.е.
.
Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b:

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

Тесноту связи изучаемых явлений оценивает линейный коэффициент парной корреляции для линейной регрессии :

и индекс корреляции - для нелинейной регрессии:

Оценку качества построенной модели даст коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации .
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
.
Допустимый предел значений - не более 8-10%.
Средний коэффициент эластичности показывает, на сколько процентов в среднем по совокупности изменится результат у от своей средней величины при изменении фактора x на 1% от своего среднего значения:
.

Задача дисперсионного анализа состоит в анализе дисперсии зависимой переменной:
,
где - общая сумма квадратов отклонений;
- сумма квадратов отклонений, обусловленная регрессией («объясненная» или «факторная»);
- остаточная сумма квадратов отклонений.
Долю дисперсии, объясняемую регрессией, в общей дисперсии результативного признака у характеризует коэффициент (индекс) детерминации R 2:

Коэффициент детерминации - квадрат коэффициента или индекса корреляции.

F-тест - оценивание качества уравнения регрессии - состоит в проверке гипотезы Но о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического F факт и критического (табличного) F табл значений F-критерия Фишера. F факт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:
,
где n - число единиц совокупности; m - число параметров при переменных х.
F табл - это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a - вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.
Если F табл < F факт, то Н о - гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если F табл > F факт, то гипотеза Н о не отклоняется и признается статистическая незначимость, ненадежность уравнения регрессии.
Для оценки статистической значимости коэффициентов регрессии и корреляции рассчитываются t-критерий Стьюдента и доверительные интервалы каждого из показателей. Выдвигается гипотеза Н о о случайной природе показателей, т.е. о незначимом их отличии от нуля. Оценка значимости коэффициентов регрессии и корреляции с помощью t-критерия Стьюдента проводится путем сопоставления их значений с величиной случайной ошибки:
; ; .
Случайные ошибки параметров линейной регрессии и коэффициента корреляции определяются по формулам:



Сравнивая фактическое и критическое (табличное) значения t-статистики - t табл и t факт - принимаем или отвергаем гипотезу Н о.
Связь между F-критерием Фишера и t-статистикой Стьюдента выражается равенством

Если t табл < t факт то H o отклоняется, т.е. a, b и не случайно отличаются от нуля и сформировались под влиянием систематически действующего фактора х. Если t табл > t факт то гипотеза Н о не отклоняется и признается случайная природа формирования а, b или .
Для расчета доверительного интервала определяем предельную ошибку D для каждого показателя:
, .
Формулы для расчета доверительных интервалов имеют следующий вид:
; ;
; ;
Если в границы доверительного интервала попадает ноль, т.е. нижняя граница отрицательна, а верхняя положительна, то оцениваемый параметр принимается нулевым, так как он не может одновременно принимать и положительное, и отрицательное значения.
Прогнозное значение определяется путем подстановки в уравнение регрессии соответствующего (прогнозного) значения . Вычисляется средняя стандартная ошибка прогноза :
,
где
и строится доверительный интервал прогноза:
; ;
где .

Пример решения

Задача №1 . По семи территориям Уральского района За 199Х г. известны значения двух признаков.
Таблица 1.
Требуется: 1. Для характеристики зависимости у от х рассчитать параметры следующих функций:
а) линейной;
б) степенной (предварительно нужно произвести процедуру линеаризации переменных, путем логарифмирования обеих частей);
в) показательной;
г) равносторонней гиперболы (так же нужно придумать как предварительно линеаризовать данную модель).
2. Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера.

Решение (Вариант №1)

Для расчета параметров a и b линейной регрессии (расчет можно проводить с помощью калькулятора).
решаем систему нормальных уравнений относительно а и b:
По исходным данным рассчитываем :
y x yx x 2 y 2 A i
l 68,8 45,1 3102,88 2034,01 4733,44 61,3 7,5 10,9
2 61,2 59,0 3610,80 3481,00 3745,44 56,5 4,7 7,7
3 59,9 57,2 3426,28 3271,84 3588,01 57,1 2,8 4,7
4 56,7 61,8 3504,06 3819,24 3214,89 55,5 1,2 2,1
5 55,0 58,8 3234,00 3457,44 3025,00 56,5 -1,5 2,7
6 54,3 47,2 2562,96 2227,84 2948,49 60,5 -6,2 11,4
7 49,3 55,2 2721,36 3047,04 2430,49 57,8 -8,5 17,2
Итого 405,2 384,3 22162,34 21338,41 23685,76 405,2 0,0 56,7
Ср. знач. (Итого/n) 57,89 54,90 3166,05 3048,34 3383,68 X X 8,1
s 5,74 5,86 X X X X X X
s 2 32,92 34,34 X X X X X X


Уравнение регрессии: у = 76,88 - 0,35х. С увеличением среднедневной заработной платы на 1 руб. доля расходов на покупку продовольственных товаров снижается в среднем на 0,35 %-ных пункта.
Рассчитаем линейный коэффициент парной корреляции:

Связь умеренная, обратная.
Определим коэффициент детерминации:

Вариация результата на 12,7% объясняется вариацией фактора х. Подставляя в уравнение регрессии фактические значения х, определим теоретические (расчетные) значения . Найдем величину средней ошибки аппроксимации :

В среднем расчетные значения отклоняются от фактических на 8,1%.
Рассчитаем F-критерий:

поскольку 1< F < ¥ , следует рассмотреть F -1 .
Полученное значение указывает на необходимость принять гипотезу Но о случайной природе выявленной зависимости и статистической незначимости параметров уравнения и показателя тесноты связи.
1б. Построению степенной модели предшествует процедура линеаризации переменных. В примере линеаризация производится путем логарифмирования обеих частей уравнения:


где Y=lg(y), X=lg(x), C=lg(a).

Для расчетов используем данные табл. 1.3.

Таблица 1.3

Y X YX Y 2 X 2 A i
1 1,8376 1,6542 3,0398 3,3768 2,7364 61,0 7,8 60,8 11,3
2 1,7868 1,7709 3,1642 3,1927 3,1361 56,3 4,9 24,0 8,0
3 1,7774 1,7574 3,1236 3,1592 3,0885 56,8 3,1 9,6 5,2
4 1,7536 1,7910 3,1407 3,0751 3,2077 55,5 1,2 1,4 2,1
5 1,7404 1,7694 3,0795 3,0290 3,1308 56,3 -1,3 1,7 2,4
6 1,7348 1,6739 2,9039 3,0095 2,8019 60,2 -5,9 34,8 10,9
7 1,6928 1,7419 2,9487 2,8656 3,0342 57,4 -8,1 65,6 16,4
Итого 12,3234 12,1587 21,4003 21,7078 21,1355 403,5 1,7 197,9 56,3
Среднее значение 1,7605 1,7370 3,0572 3,1011 3,0194 X X 28,27 8,0
σ 0,0425 0,0484 X X X X X X X
σ 2 0,0018 0,0023 X X X X X X X

Рассчитаем С иb:


Получим линейное уравнение:.
Выполнив его потенцирование, получим:

Подставляя в данное уравнение фактические значения х, получаем теоретические значения результата. По ним рассчитаем показатели: тесноты связи - индекс корреляции и среднюю ошибку аппроксимации

Характеристики степенной модели указывают, что она несколько лучше линейной функции описывает взаимосвязь.

. Построению уравнения показательной кривой

предшествует процедура линеаризации переменных при логарифмировании обеих частей уравнения:

Для расчетов используем данные таблицы.

Y x Yx Y 2 x 2 A i
1 1,8376 45,1 82,8758 3,3768 2034,01 60,7 8,1 65,61 11,8
2 1,7868 59,0 105,4212 3,1927 3481,00 56,4 4,8 23,04 7,8
3 1,7774 57,2 101,6673 3,1592 3271,84 56,9 3,0 9,00 5,0
4 1,7536 61,8 108,3725 3,0751 3819,24 55,5 1,2 1,44 2,1
5 1,7404 58,8 102,3355 3,0290 3457,44 56,4 -1,4 1,96 2,5
6 1,7348 47,2 81,8826 3,0095 2227,84 60,0 -5,7 32,49 10,5
7 1,6928 55,2 93,4426 2,8656 3047,04 57,5 -8,2 67,24 16,6
Итого 12,3234 384,3 675,9974 21,7078 21338,41 403,4 -1,8 200,78 56,3
Ср. зн. 1,7605 54,9 96,5711 3,1011 3048,34 X X 28,68 8,0
σ 0,0425 5,86 X X X X X X X
σ 2 0,0018 34,339 X X X X X X X

Значения параметров регрессии A и В составили:


Получено линейное уравнение: . Произведем потенцирование полученного уравнения и запишем его в обычной форме:

Тесноту связи оценим через индекс корреляции :

При наличии корреляционной связи между факторными и результативными признаками врачам нередко приходится устанавливать, на какую величину может измениться значение одного признака при изменении другого на общепринятую или установленную самим исследователем единицу измерения.

Например, как изменится масса тела школьников 1-го класса (девочек или мальчиков), если рост их увеличится на 1 см. В этих целях применяется метод регрессионного анализа.

Наиболее часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.

  1. Определение регрессии . Регрессия - функция, позволяющая по средней величине одного признака определить среднюю величину другого признака, корреляционно связанного с первым.

    С этой целью применяется коэффициент регрессии и целый ряд других параметров. Например, можно рассчитать число простудных заболеваний в среднем при определенных значениях среднемесячной температуры воздуха в осенне-зимний период.

  2. Определение коэффициента регрессии . Коэффициент регрессии - абсолютная величина, на которую в среднем изменяется величина одного признака при изменении другого связанного с ним признака на установленную единицу измерения.
  3. Формула коэффициента регрессии . R у/х = r ху x (σ у / σ x)
    где R у/х - коэффициент регрессии;
    r ху - коэффициент корреляции между признаками х и у;
    (σ у и σ x) - среднеквадратические отклонения признаков x и у.

    В нашем примере ;
    σ х = 4,6 (среднеквадратическое отклонение температуры воздуха в осенне-зимний период;
    σ у = 8,65 (среднеквадратическое отклонение числа инфекционно-простудных заболеваний).
    Таким образом, R у/х - коэффициент регрессии.
    R у/х = -0,96 х (4,6 / 8,65) = 1,8, т.е. при снижении среднемесячной температуры воздуха (x) на 1 градус среднее число инфекционно-простудных заболеваний (у) в осенне-зимний период будет изменяться на 1,8 случаев.

  4. Уравнение регрессии . у = М у + R y/x (х - М x)
    где у - средняя величина признака, которую следует определять при изменении средней величины другого признака (х);
    х - известная средняя величина другого признака;
    R y/x - коэффициент регрессии;
    М х, М у - известные средние величины признаков x и у.

    Например, среднее число инфекционно-простудных заболеваний (у) можно определить без специальных измерений при любом среднем значении среднемесячной температуры воздуха (х). Так, если х = - 9°, R у/х = 1,8 заболеваний, М х = -7°, М у = 20 заболеваний, то у = 20 + 1,8 х (9-7) = 20 + 3,6 = 23,6 заболеваний.
    Данное уравнение применяется в случае прямолинейной связи между двумя признаками (х и у).

  5. Назначение уравнения регрессии . Уравнение регрессии используется для построения линии регрессии. Последняя позволяет без специальных измерений определить любую среднюю величину (у) одного признака, если меняется величина (х) другого признака. По этим данным строится график - линия регрессии , по которой можно определить среднее число простудных заболеваний при любом значении среднемесячной температуры в пределах между расчетными значениями числа простудных заболеваний.
  6. Сигма регрессии (формула) .
    где σ Rу/х - сигма (среднеквадратическое отклонение) регрессии;
    σ у - среднеквадратическое отклонение признака у;
    r ху - коэффициент корреляции между признаками х и у.

    Так, если σ у - среднеквадратическое отклонение числа простудных заболеваний = 8,65; r ху - коэффициент корреляции между числом простудных заболеваний (у) и среднемесячной температурой воздуха в осенне-зимний период (х) равен - 0,96, то

  7. Назначение сигмы регрессии . Дает характеристику меры разнообразия результативного признака (у).

    Например, характеризует разнообразие числа простудных заболеваний при определенном значении среднемесячной температуры воздуха в осеннне-зимний период. Так, среднее число простудных заболеваний при температуре воздуха х 1 = -6° может колебаться в пределах от 15,78 заболеваний до 20,62 заболеваний.
    При х 2 = -9° среднее число простудных заболеваний может колебаться в пределах от 21,18 заболеваний до 26,02 заболеваний и т.д.

    Сигма регрессии используется при построении шкалы регрессии, которая отражает отклонение величин результативного признака от среднего его значения, отложенного на линии регрессии.

  8. Данные, необходимые для расчета и графического изображения шкалы регрессии
    • коэффициент регрессии - R у/х;
    • уравнение регрессии - у = М у + R у/х (х-М x);
    • сигма регрессии - σ Rx/y
  9. Последовательность расчетов и графического изображения шкалы регрессии .
    • определить коэффициент регрессии по формуле (см. п. 3). Например, следует определить, насколько в среднем будет меняться масса тела (в определенном возрасте в зависимости от пола), если средний рост изменится на 1 см.
    • по формуле уравнения регрессии (см п. 4) определить, какой будет в среднем, например, масса тела (у, у 2 , у 3 ...)* для определеного значения роста (х, х 2 , х 3 ...).
      ________________
      * Величину "у" следует рассчитывать не менее чем для трех известных значений "х".

      При этом средние значения массы тела и роста (М х, и М у) для определенного возраста и пола известны

    • вычислить сигму регрессии, зная соответствующие величины σ у и r ху и подставляя их значения в формулу (см. п. 6).
    • на основании известных значений х 1 , х 2 , х 3 и соответствующих им средних значений у 1 , у 2 у 3 , а также наименьших (у - σ rу/х)и наибольших (у + σ rу/х) значений (у) построить шкалу регрессии.

      Для графического изображения шкалы регрессии на графике сначала отмечаются значения х, х 2 , х 3 (ось ординат), т.е. строится линия регрессии, например зависимости массы тела (у) от роста (х).

      Затем в соответствующих точках у 1 , y 2 , y 3 отмечаются числовые значения сигмы регрессии, т.е. на графике находят наименьшее и наибольшее значения у 1 , y 2 , y 3 .

  10. Практическое использование шкалы регрессии . Разрабатываются нормативные шкалы и стандарты, в частности по физическому развитию. По стандартной шкале можно дать индивидуальную оценку развития детей. При этом физическое развитие оценивается как гармоничное, если, например, при определенном росте масса тела ребенка находится в пределах одной сигмы регрессии к средней расчетной единице массы тела - (у) для данного роста (x) (у ± 1 σ Ry/x).

    Физическое развитие считается дисгармоничным по массе тела, если масса тела ребенка для определенного роста находится в пределах второй сигмы регрессии: (у ± 2 σ Ry/x)

    Физическое развитие будет резко дисгармоничным как за счет избыточной, так и за счет недостаточной массы тела, если масса тела для определенного роста находится в пределах третьей сигмы регрессии (у ± 3 σ Ry/x).

По результатам статистического исследования физического развития мальчиков 5 лет известно, что их средний рост (х) равен 109 см, а средняя масса тела (у) равна 19 кг. Коэффициент корреляции между ростом и массой тела составляет +0,9, средние квадратические отклонения представлены в таблице.

Требуется:

  • рассчитать коэффициент регрессии;
  • по уравнению регрессии определить, какой будет ожидаемая масса тела мальчиков 5 лет при росте, равном х1 = 100 см, х2 = 110 см, х3= 120 см;
  • рассчитать сигму регрессии, построить шкалу регрессии, результаты ее решения представить графически;
  • сделать соответствующие выводы.

Условие задачи и результаты ее решения представлены в сводной таблице.

Таблица 1

Условия задачи Pезультаты решения задачи
уравнение регрессии сигма регрессии шкала регрессии (ожидаемая масса тела (в кг))
М σ r ху R у/x х У σ R x/y y - σ Rу/х y + σ Rу/х
1 2 3 4 5 6 7 8 9 10
Рост (х) 109 см ± 4,4см +0,9 0,16 100см 17,56 кг ± 0,35 кг 17,21 кг 17,91 кг
Масса тела (y) 19 кг ± 0,8 кг 110 см 19,16 кг 18,81 кг 19,51 кг
120 см 20,76 кг 20,41 кг 21,11 кг

Решение .

Вывод. Таким образом, шкала регрессии в пределах расчетных величин массы тела позволяет определить ее при любом другом значении роста или оценить индивидуальное развитие ребенка. Для этого следует восстановить перпендикуляр к линии регрессии.

  1. Власов В.В. Эпидемиология. - М.: ГЭОТАР-МЕД, 2004. - 464 с.
  2. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2007. - 512 с.
  3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению: Часть 1. Общественное здоровье. - М.: Медицина, 2003. - 368 с.
  4. Миняев В.А., Вишняков Н.И. и др. Социальная медицина и организация здравоохранения (Руководство в 2 томах). - СПб, 1998. -528 с.
  5. Кучеренко В.З., Агарков Н.М. и др.Социальная гигиена и организация здравоохранения (Учебное пособие) - Москва, 2000. - 432 с.
  6. С. Гланц. Медико-биологическая статистика. Пер с англ. - М., Практика, 1998. - 459 с.

После того как с помощью корреляционного анализа выявлено наличие статистических связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с использованием регрессионного анализа. С этой целью подбирают класс функций, связывающий результативный показатель у и аргументы х 1, х 2,…, х к отбирают наиболее информативные аргументы, вычисляют оценки неизвестных значений параметров уравнения связи и анализируют свойства полученного уравнения.

Функция f(х 1, х 2,…, х к) описывающая зависимость среднего значения результативного признака у от заданных значений аргументов, называется функцией (уравнением) регрессии. Термин «регрессия» (лат. -regression- отступление, возврат к чему-либо) введен английским психологом и антропологом Ф.Гальтоном и связан исключительно со спецификой одного из первых конкретных примеров, в котором это понятие было использовано. Так, обрабатывая статистические данные в связи с анализом наследственности роста, Ф. Гальтон нашел, что если отцы отклоняются от среднего роста всех отцов на x дюймов, то их сыновья отклоняются от среднего роста всех сыновей меньше, чем на x дюймов. Выявленная тенденция была названа «регрессией к среднему состоянию». С тех пор термин «регрессия» широко используется в статистической литературе, хотя во многих случаях он недостаточно точно характеризует понятие статистической зависимости.

Для точного описания уравнения регрессии необходимо знать закон распределения результативного показателя у. В статистической практике обычно приходится ограничиваться поиском подходящих аппроксимаций для неизвестной истинной функции регрессии, так как исследователь не располагает точным знанем условного закона распределения вероятностей анализируемого результатирующего показателя у при заданных значениях аргумента х.

Рассмотрим взаимоотношение между истинной f(х) = М(у1х), мо дельной регрессией? и оценкой y регрессии. Пусть результативный показатель у связан с аргументом х соотношением:

где - е случайная величина, имеющая нормальный закон распределения, причем Ме = 0 и D е = у 2 . Истинная функция регрессии в этом случае имеет вид: f (х) = М(у/х) = 2х 1.5 .

Предположим, что точный вид истинного уравнения регрессии нам не известен, но мы располагаем девятью наблюдениями над двумерной случайной величиной, связанной соотношением уi= 2х1,5+е, и представленной на рис. 1

Рисунок 1 - Взаимное расположение истиной f (х) и теоретической? модели регрессии

Расположение точек на рис. 1 позволяет ограничиться классом линейных зависимостей вида? = в 0 +в 1 x. С помощью метода наименьших квадратов найдем оценку уравнения регрессии у = b 0 +b 1 x. Для сравнения на рис. 1 приводятся графики истинной функции регрессии у=2х 1,5 , теоретической аппроксимирующей функции регрессии? = в 0 +в 1 x .

Поскольку мы ошиблись в выборе класса функции регрессии, а это достаточно часто встречается в практике статистических исследований, то наши статистические выводы и оценки окажутся ошибочными. И как бы мы ни увеличивали объем наблюдений, наша выборочная оценка у не будет близка к истинной функции регрессии f (х). Если бы мы правильно выбрали класс функций регрессии, то неточность в описании f(х) с помощью? объяснялась бы только ограниченностью выборки.

С целью наилучшего восстановления по исходным статистическим данным условного значения результативного показателя у(х) и неизвестной функции регрессии f(х) = М(у/х) наиболее часто используют следующие критерии адекватности (функции потерь).

Метод наименьших квадратов. Согласно ему минимизируется квадрат отклонения наблюдаемых значений результативного показателя у, (i = 1,2,..., п) от модельных значений,? = f(х i), где, х i - значение вектора аргументов в i-м наблюдении: ?(y i - f(х i) 2 > min. Получаемая регрессия называется среднеквадратической.

Метод наименьших модулей. Согласно ему минимизируется сумма абсолютных отклонений наблюдаемых значений результативного показателя от модульных значений. И получаем,? = f(х i), среднеабсолютную медианную регрессию? |y i - f(х i)| >min.

Регрессионным анализом называется метод статистического анализа зависимости случайной величины у от переменных х j = (j=1,2,..., к), рассматриваемых в регрессионном анализе как неслучайные величины, независимо от истинного закона распределения х j.

Обычно предполагается, что случайная величина у имеет нормальный закон распределения с условным математическим ожиданием у, являющимся функцией от аргументов х/ (/= 1, 2,..., к) и постоянной, не зависящей от аргументов, дисперсией у 2 .

В общем линейная модель регрессионного анализа имеет вид:

Y = Уk j=0 вj цj (x1 , x2 . . .. ,xk )+Э

где ц j - некоторая функция его переменных - x 1 , x 2 . . .. ,x k , Э - случайная величина с нулевым математическим ожиданием и дисперсией у 2 .

В регрессионном анализе вид уравнения регрессии выбирают исходя из физической сущности изучаемого явления и результатов наблюдения.

Оценки неизвестных параметров уравнения регрессии находят обычно методом наименьших квадратов. Ниже остановимся более подробно на этой проблеме.

Двумерное линейное уравнение регрессии. Пусть на основании анализа исследуемого явления предполагается, что в «среднем» у есть линейная функция от х, т. е. имеется уравнение регрессии

у=М(у/х)=в 0 + в 1 х)

где М(у1х) - условное математическое ожидание случайной величины у при заданном х; в 0 и в 1 - неизвестные параметры генеральной совокупности, которые надлежит оценить по результатам выборочных наблюдений.

Предположим, что для оценки параметров в 0 и в 1 из двухмерной генеральной совокупности (х, у) взята выборка объемом n, где (х, у,) результат i-го наблюдения (i = 1, 2,..., n). В этом случае модель регрессионного анализа имеет вид:

y j = в 0 + в 1 x+е j .

где е j .- независимые нормально распределенные случайные величины с нулевым математическим ожиданием и дисперсией у 2 , т. е. М е j . = 0;

D е j .= у 2 для всех i = 1, 2,..., n.

Согласно методу наименьших квадратов в качестве оценок неизвестных параметров в 0 и в 1 следует брать такие значения выборочных характеристик b 0 и b 1 , которые минимизируют сумму квадратов отклонений значений результативного признака у i от условного математического ожидания? i

Методику определения влияния характеристик маркетинга на прибыль предприятия рассмотрим на примере семнадцати типичных предприятий, имеющих средние размеры и показатели хозяйственной деятельности.

При решении задачи учитывались следующие характеристики, выявленные в результате анкетного опроса как наиболее значимые (важные):

* инновационная деятельность предприятия;

* планирование ассортимента производимой продукции;

* формирование ценовой политики;

* взаимоотношения с общественностью;

* система сбыта;

* система стимулирования работников.

На основе системы сравнений по факторам были построены квадратные матрицы смежности, в которых вычислялись значения относительных приоритетов по каждому фактору: инновационная деятельность предприятия, планирование ассортимента производимой продукции, формирование ценовой политики, реклама, взаимоотношения с общественностью, система сбыта, система стимулирования работников.

Оценки приоритетов по фактору «взаимоотношения с общественностью» получены в результате анкетирования специалистов предприятия. Приняты следующие обозначения: > (лучше), > (лучше или одинаково), = (одинаково), < (хуже или одинаково), <

Далее решалась задача комплексной оценки уровня маркетинга предприятия. При расчете показателя была определена значимость (вес) рассмотренных частных признаков и решалась задача линейного свертывания частных показателей. Обработка данных производилась по специально разработанным программам.

Далее рассчитывается комплексная оценка уровня маркетинга предприятия -- коэффициент маркетинга, который вносится в таблице 1. Кроме того, в названую таблицу включены показатели, характеризующие предприятие в целом. Данные в таблице будут использованы для проведения регрессионного анализа. Результативным признаком является прибыль. В качестве факторных признаков наряду с коэффициентом маркетинга использованы следующие показатели: объем валовой продукции, стоимость основных фондов, численность работников, коэффициент специализации.

Таблица 1 - Исходные данные для регрессионного анализа


По данным таблицы и на основе факторов с наиболее существенными значениями коэффициентов корреляции были построены регрессионные функции зависимости прибыли от факторов.

Уравнение регрессии в нашем случае примет вид:

О количественном влиянии рассмотренных выше факторов на величину прибыли говорят коэффициенты уравнения регрессии. Они показывают, на сколько тысяч рублей изменяется ее величина при изменении факторного признака на одну единицу. Как следует из уравнения, увеличение коэффициента комплекса маркетинга на одну единицу дает прирост прибыли на 1547,7 тыс. руб. Это говорит о том, что в совершенствовании маркетинговой деятельности кроется огромный потенциал улучшения экономических показателей предприятий.

При исследовании эффективности маркетинга наиболее интересным и самым важным факторным признаком является фактор Х5 -- коэффициент маркетинга. В соответствии с теорией статистики достоинство имеющегося уравнения множественной регрессии является возможность оценивать изолированное влияние каждого фактора, в том числе фактора маркетинга.

Результаты проведенного регрессионного анализа имеют и более широкое применение, чем для расчета параметров уравнения. Критерий отнесения (КЭф,) предприятий к относительно лучшим или относительно худшим основан на относительном показателе результата:

где Y фактi - фактическая величина i-го предприятия, тыс. руб.;

Y расчi -величина прибыли i-го предприятия, полученная расчетным путем по уравнению регрессии

В терминах решаемой задачи величина носит название «коэффициент эффективности». Деятельность предприятия можно признать эффективной в тех случаях, когда величина коэффициента больше единицы. Это означает, что фактическая прибыль больше прибыли, усредненной по выборке.

Фактические и расчетные значения прибыли представлены в табл. 2.

Таблица 2 - Анализ результативного признака в регрессионной модели

Анализ таблицы показывает, что в нашем случае деятельность предприятий 3, 5, 7, 9, 12, 14, 15, 17 за рассматриваемый период можно признать успешной.

Характеристика причинных зависимостей

Причинно-следственные отношения – это связь явлений и процессов, когда изменение одного из них – причины – ведет к изменению другого – следствия.

Признаки по их значению для изучения взаимосвязи делятся на два класса.

Признаки, обуславливающие изменения других, связанных с ними признаков, называются факторными (или факторами).

Признаки, изменяющиеся под действием факторных признаков, являются результативными.

Различают следующие формы связи: функциональную и стохастическую. Функциональной называют такую связь, при которой определенному значению факторного признака соответствует одно и только одно значение результативного признака. Функциональная связь проявляется во всех случаях наблюдения и для каждой конкретной единицы исследуемой совокупности.

Функциональную связь можно представить следующим уравнением:
y i =f(x i), где: y i - результативный признак; f(x i) - известная функция связи результативного и факторного признаков; x i - факторный признак.
В реальной природе функциональных связей нет. Они являются лишь абстракциями, полезными при анализе явлений, но упрощающими реальность.

Стохастическая (статистическая или случайная) связь представляет собой связь между величинами, при которой одна из них реагирует на изменение другой величины или других величин изменением закона распределения. Иными словами, при данной связи разным значениям одной переменной соответствуют разные распределения другой переменной. Это обуславливается тем, что зависимая переменная, кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых случайных факторов, а также некоторых неизбежных ошибок измерения переменных. В связи с тем, что значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а могут быть только указаны с определенной вероятностью.

В силу неоднозначности стохастической зависимости между Y и X, в частности представляет интерес усредненная по х схема зависимости, т.е. закономерность в изменении среднего значения – условного математического ожидания Мх(У) (математического ожидания случайной переменной У, найденного при условии, что переменная Х приняла значение х) в зависимости от х.

Частным случаем стохастической связи является корреляционная связь. Корреля́ция (от лат. correlatio - соотношение, взаимосвязь). Прямое токование термина корреляция - стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.

Корреляционной зависимостью между двумя переменными также называют статистическую взаимосвязь между этими переменными, при которой каждому значению одной переменной соответствует определенное среднее значение, т.е. условное математическое ожидание другой. Корреляционная зависимость является частным случаем стохастиче­ской зависимости, при которой изменение значений факторных признаков (х 1 х 2 ..., х n) влечет за собой изменение среднего значения результативно­го признака.



Принято различать следующие виды корреляции:

1. Парная корреляция – связь между двумя признаками (результативным и факторным или двумя факторными).

2. Частная корреляция – зависимость между результативным и одним факторным признаками при фиксированном значении других факторных признаков, включенных в исследование.

3. Множественная корреляция – зависимость результативного и двух или более факторных признаков, включенных в исследование.

Назначение регрессионного анализа

Аналитической формой представления причинно-следственных отношений являются регрессионные модели. Научная обоснованность и популярность регрессионного анализа делает его одним из основных математических средств моделирования исследуемого явления. Этот метод применяется для сглаживания экспериментальных данных и получения количественных оценок сравнительного влияния различных факторов на результативную переменную.

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменение одной величины (зависимой переменной или результативного признака) обусловлено влиянием одной или нескольких независимых величин (факторов или предикторов), а множество всех прочих факторов, также оказывающих влияние на зависимую величину, принимается за постоянные и средние значения.

Цели регрессионного анализа:

Оценка функциональной зависимости условного среднего значения результативного признака у от факторных (х 1 ,х 2 , …, х n);

Предсказание значения зависимой переменной с помощью независимой(-ых).

Определение вклада отдельных независимых переменных в вариацию зависимой переменной.

Регрессионный анализ нельзя использовать для определения наличия связи между переменными, поскольку наличие такой связи и есть предпосылка для применения анализа.

В регрессионном анализе зара­нее подразумевается наличие причинно-следственных связей между ре­зультативным (У) и факторными х 1 , х 2 ..., х n признаками.

Функция , оп исывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии 1 . Уравнение регрессии показывает ожидаемое значение зависимой переменной при определенных значениях независимых переменных .
В зависимости от количества включенных в модель факторов Х модели делятся на однофакторные (парная модель регрессии) и многофакторные (модель множественной регрессии). В зависимости от вида функции модели делятся на линейные и нелинейные.

Парная регрессионная модель

В силу воздействия неучтенных случайных факторов и причин отдельные наблюдения у будут в большей или меньшей мере отклоняться от функции регрессии f(х). В этом случае уравнение взаимосвязи двух переменных (парная регрессионная модель) может быть представлено в виде:

Y=f(X) + ɛ,

где ɛ - случайная переменная, характеризующая отклонение от функции регрессии. Эту переменную называют возмущающей или возмущением (остатком или ошибкой). Таким образом, в регрессионной модели зависимая переменная Y есть некоторая функция f(X) с точностью до случайного возмущения ɛ.

Рассмотрим классическую линейную модель парной регрессии (КЛМПР). Она имеет вид

у i =β 0 +β 1 х i +ɛ i (i=1,2, …, n), (1)

где у i –объясняемая (результирующая, зависимая, эндогенная переменная);х i – объясняющая (предикторная, факторная, экзогенная) переменная; β 0 , β 1 – числовые коэффициенты; ɛ i – случайная (стохастическая) составляющая или ошибка.

Основные условия (предпосылки, гипотезы) КЛМПР:

1) х i – детерминированная (неслучайная) величина, при этом предполагается, что среди значений х i – не все одинаковые.

2) Математическое ожидание (среднее значение) возмущения ɛ i равно нулю:

М[ɛ i ]=0 (i=1,2, …, n).

3) Дисперсия возмущения постоянна для любых значений i (условие гомоскедастичности):

D[ɛ i ]=σ 2 (i=1,2, …, n).

4) Возмущения для разных наблюдений являются некоррелированными:

cov[ɛ i , ɛ j ]=M[ɛ i , ɛ j ]=0 при i≠j,

где cov[ɛ i , ɛ j ] – коэффициент ковариации (корреляционный момент).

5) Возмущения являются нормально распределенными случайными величинами с нулевым средним значением и дисперсией σ 2:

ɛ i ≈ N(0, σ 2).

Для получения уравнения регрессии достаточно первых четырех предпосылок. Требование выполнения пятой предпосылки необходимо для оценки точности уравнения регрессии и его параметров.

Замечание: Внимание к линейным связям объясняется ограниченной вариацией переменных и тем, что в большинстве случаев нелинейные формы связи для выполнения расчётов преобразуют (путём логарифмирования или замены переменных) в линейную форму.

Традиционный метод наименьших квадратов (МНК)

Оценкой модели по выборке является уравнение

ŷ i = a 0 + a 1 x i (i=1,2, …, n), (2)

где ŷ i – теоретические (аппроксимирующие) значения зависимой переменной, полученные по уравнению регрессии; a 0 , a 1 - коэффициенты (параметры) уравнения регрессии (выборочные оценки коэффициентов β 0 , β 1 соответственно).

Согласно МНК неизвестные параметры a 0 , a 1 выбирают так, чтобы сумма квадратов отклонений значений ŷ i от эмпирических значений y i (остаточная сумма квадратов) была минимальной:

Q e =∑e i 2 = ∑(y i – ŷ i) 2 = ∑(yi – (a 0 + a 1 x i)) 2 → min, (3)

где e i = y i - ŷ i – выборочная оценка возмущения ɛ i , или остаток регрессии.

Задача сводится к отысканию таких значений параметров a 0 и a 1 , при которых функция Q e принимает наименьшее значение. Заметим, что функция Q e = Q e (a 0 , a 1) есть функция двух переменных a 0 и a 1 до тех пор, пока мы не нашли, а затем зафиксировали их «наилучшие» (в смысле метода наименьших квадратов) значения, а х i , y i – постоянные числа, найденные экспериментально.

Необходимые условия экстремума (3) находятся путем приравнивания к нулю частных производных этой функции двух переменных. В результате получим систему двух линейных уравнений, которая называется системой нормальных уравнений:

(4)

Коэффициент a 1 – выборочный коэффициент регрессии у на х, который показывает на сколько единиц в среднем изменяется переменная у при изменении переменной х на одну единицу своего измерения, то есть вариацию у, приходящуюся на единицу вариации х. Знак a 1 указывает направление этого изменения. Коэффициент a 0 – смещение, согласно (2) равен значению ŷ i при х=0 и может не иметь содержательной интерпретации. За это иногда зависимую переменную называют откликом.

Статистические свойства оценок коэффициентов регрессии:

Оценки коэффициентов a 0 , a 1 являются несмещенными;

Дисперсии оценок a 0 , a 1 уменьшаются (точность оценок увеличивается) при увеличении объема выборки n;

Дисперсия оценки углового коэффициента a 1 уменьшается при увеличении и поэтому желательно выбирать х i так, чтобы их разброс вокруг среднего значения был большим;

При х¯ > 0 (что представляет наибольший интерес) между a 0 и a 1 имеется отрицательная статистическая связь (увеличение a 1 приводит к уменьшению a 0).

Целью регрессионного анализа является измерение связи меж­ду зависимой переменной и одной (парный регрессионный анализ) или не­сколькими (множественный) независимыми переменными. Независимые переменные называют также факторными, объясняющими, опреде­ляющими, регрессорами и предикторами.

Зависимую переменную иногда называют определяемой, объясняемой, «откликом». Чрезвы­чайно широкое распространение регрессионного анализа в эмпири­ческих исследованиях связано не только с тем, что это удобный ин­струмент тестирования гипотез. Регрессия, особенно множественная, является эффективным методом моделирования и прогнозирования.

Объяснение принципов работы с регрессионным анализом начнем с более простого - парного метода.

Парный регрессионный анализ

Первые действия при использовании регрессионного анализа будут практически идентичны предпринятым нами в рамках вычисления коэффициента корреляции. Три основных условия эффективности корреляционного анализа по методу Пирсона - нормальное распре­деление переменных, интервальное измерение переменных, линейная связь между переменными - актуальны и для множественной регрес­сии. Соответственно, на первом этапе строятся диаграммы рассеяния, проводится статистически-описательный анализ переменных и вы­числяется линия регрессии. Как и в рамках корреляционного анализа, линии регрессии строятся методом наименьших квадратов.

Чтобы более наглядно проиллюстрировать различия между двумя методами анализа данных, обратимся к уже рассмотренному приме­ру с переменными «поддержка СПС» и «доля сельского населения». Исходные данные идентичны. Отличие в диаграммах рассеяния бу­дет заключаться в том, что в регрессионном анализе корректно от­кладывать зависимую переменную - в нашем случае «поддержка СПС» по оси Y, тогда как в корреляционном анализе это не имеет значения. После чистки выбросов диаграмма рассеяния имеет вид:

Принципиальная идея регрессионного анализа состоит в том, что, имея общую тенденцию для переменных - в виде линии регрессии, - можно предсказать значение зависимой переменной, имея значения независимой.

Представим обычную математическую линейную функцию. Лю­бую прямую в евклидовом пространстве можно описать формулой:

где а - константа, задающая смещение по оси ординат; b - коэффи­циент, определяющий угол наклона линии.

Зная угловой коэффициент и константу, можно рассчитать (пред­сказать) значение у для любого х.

Эта простейшая функция и легла в основу модели регрессионного анализа с той оговоркой, что значение у мы предскажем не точно, а в рамках определенного доверительного интервала, т.е. приблизительно.

Константой является точка пересечения линии регрессии и оси ординат (F-пересечение, в статистических пакетах, как правило, обозначаемое «interceptor»). В нашем примере с голосованием за СПС ее округленное значение составит 10,55. Угловой коэффициент Ъ бу­дет равен примерно -0,1 (как и в корреляционном анализе, знак по­казывает тип связи - прямая или обратная). Таким образом, получен­ная модель будет иметь вид СП С = -0,1 х Сел. нас. + 10,55.

СПС = -0,10 х 47 + 10,55 = 5,63.

Разность между исходным и предсказанным значениями называет­ся остатком (с этим термином - принципиальным для статистики - мы уже сталкивались при анализе таблиц сопряженности). Так, для случая «Республика Адыгея» остаток будет равен 3,92 - 5,63 = -1,71. Чем больше модульное значение остатка, тем менее удачно предсказа­но значение.

Рассчитываем предсказанные значения и остатки для всех случаев:
Случай Сел. нас. СПС

(исходное)

СПС

(предсказанное)

Остатки
Республика Адыгея 47 3,92 5,63 -1,71 -
Республика Алтай 76 5,4 2,59 2,81
Республика Башкортостан 36 6,04 6,78 -0,74
Республика Бурятия 41 8,36 6,25 2,11
Республика Дагестан 59 1,22 4,37 -3,15
Республика Ингушетия 59 0,38 4,37 3,99
И т.д.

Анализ соотношения исходных и предсказанных значений служит для оценки качества полученной модели, ее прогностической способности. Одним из главных показателей регрессионной статистики является множественный коэффициент корреляции R - коэффициент корреляции между исходными и предсказанными значениями зави­симой переменной. В парном регрессионном анализе он равен обыч­ному коэффициенту корреляции Пирсона между зависимой и неза­висимой переменной, в нашем случае - 0,63. Чтобы содержательно интерпретировать множественный R, его необходимо преобразовать в коэффициент детерминации. Это делается так же, как и в корреля­ционном анализе - возведением в квадрат. Коэффициент детерминации R -квадрат (R 2) показывает долю вариации зависимой пере­менной, объясняемую независимой (независимыми) переменными.

В нашем случае R 2 = 0,39 (0,63 2); это означает, что переменная «доля сельского населения» объясняет примерно 40% вариации переменной «поддержка СПС». Чем больше величина коэффициента детер­минации, тем выше качество модели.

Другим показателем качества модели является стандартная ошиб­ка оценки (standard error of estimate). Это показатель того, насколько сильно точки «разбросаны» вокруг линии регрессии. Мерой разброса для интервальных переменных является стандартное отклонение. Со­ответственно, стандартная ошибка оценки - это стандартное откло­нение распределения остатков. Чем выше ее значение, тем сильнее разброс и тем хуже модель. В нашем случае стандартная ошибка со­ставляет 2,18. Именно на эту величину наша модель будет «ошибаться в среднем» при прогнозировании значения переменной «поддерж­ка СПС».

Регрессионная статистика включает в себя также дисперсионный анализ. С его помощью мы выясняем: 1) какая доля вариации (дисперсии) зависимой переменной объясняется независимой перемен­ной; 2) какая доля дисперсии зависимой переменной приходится на остатки (необъясненная часть); 3) каково отношение этих двух вели­чин (/"-отношение). Дисперсионная статистика особенно важна для выборочных исследований - она показывает, насколько вероятно наличие связи между независимой и зависимой переменными в генеральной совокупности. Однако и для сплошных исследований (как в нашем примере) изучение результатов дисперсионного анализа небесполезно. В этом случае проверяют, не вызвана ли выявленная ста­тистическая закономерность стечением случайных обстоятельств, насколько она характерна для того комплекса условий, в которых на­ходится обследуемая совокупность, т.е. устанавливается не истинность полученного результата для какой-то более обширной гене­ральной совокупности, а степень его закономерности, свободы от случайных воздействий.

В нашем случае статистика дисперсионного анализа такова:

SS df MS F значение
Регрес. 258,77 1,00 258,77 54,29 0.000000001
Остат. 395,59 83,00 Л,11
Всего 654,36

F-отношение 54,29 значимо на уровне 0,0000000001. Соответ­ственно, мы можем с уверенностью отвергнуть нулевую гипотезу (что обнаруженная нами связь носит случайный характер).

Аналогичную функцию выполняет критерий t, но уже в отношении регрессионных коэффициентов (углового и F-пересечения). С помо­щью критерия / проверяем гипотезу о том, что в генеральной совокуп­ности регрессионные коэффициенты равны нулю. В нашем случае мы вновь можем уверенно отбросить нулевую гипотезу.

Множественный регрессионный анализ

Модель множественной регрессии практически идентична модели парной регрессии; разница лишь в том, что в линейную функцию последовательно включаются несколько независимых переменных:

Y = b1X1 + b2X2 + …+ bpXp + а.

Если независимых переменных больше двух, мы не имеем возмож­ности получить визуальное представление об их связи, в этом плане множественная регрессия менее «наглядна», нежели парная. При на­личии двух независимых переменных данные бывает полезно отобразить на трехмерной диаграмме рассеяния. В профессиональных ста­тистических пакетах программ (например, Statisticа) существует опция вращения трехмерной диаграммы, позволяющая хорошо визуально представить структуру данных.

При работе с множественной регрессией, в отличие от парной, не­обходимо определять алгоритм анализа. Стандартный алгоритм включает в итоговую регрессионную модель все имеющиеся предикторы. Пошаговый алгоритм предполагает последовательное включе­ние (исключение) независимых переменных, исходя из их объяснительного «веса». Пошаговый метод хорош, когда имеется много независимых переменных; он «очищает» модель от откровенно слабых предикторов, делая ее более компактной и лаконичной.

Дополнительным условием корректности множественной регрес­сии (наряду с интервальностью, нормальностью и линейностью) является отсутствие мультиколлинеарности - наличия сильных корреляционных связей между независимыми переменными.

Интерпретация статистики множественной регрессии включает в себя все злементы, рассмотренные нами для случая парной регрессии. Кроме того, в статистике множественного регрессионного анализа есть и другие важные составляющие.

Работу с множественной регрессией мы проиллюстрируем на при­мере тестирования гипотез, объясняющих различия в уровне электоральной активности по регионам России. В ходе конкретных эмпири­ческих исследований были высказаны предположения, что на уровень явки избирателей влияют:

Национальный фактор (переменная «русское население»; операционализирована как доля русского населения в субъектах РФ). Предполагается, что увеличение доли русского населения ведет к сни­жению активности избирателей;

Фактор урбанизации (переменная «городское население»; операционализирована как доля городского населения в субъектах РФ, с этим фактором мы уже работали в рамках корреляционного анализа). Предполагается, что увеличение доли городского населения также ве­дет к снижению активности избирателей.

Зависимая переменная - «интенсивность избирательной активно­сти» («актив») операционализирована через усредненные данные яв­ки по регионам на федеральных выборах с 1995 по 2003 г. Исходная таблица данных для двух независимых и одной зависимой перемен­ной будет иметь следующий вид:

Случай Переменные
Актив. Гор. нас. Рус. нас.
Республика Адыгея 64,92 53 68
Республика Алтай 68,60 24 60
Республика Бурятия 60,75 59 70
Республика Дагестан 79,92 41 9
Республика Ингушетия 75,05 41 23
Республика Калмыкия 68,52 39 37
Карачаево-Черкесская Республика 66,68 44 42
Республика Карелия 61,70 73 73
Республика Коми 59,60 74 57
Республика Марий Эл 65,19 62 47

И т.д. (после чистки выбросов остается 83 случая из 88)

Статистика, описывающая качество модели:

1. Множественный R = 0,62; Л-квадрат = 0,38. Следовательно, национальный фактор и фактор урбанизации вместе объясняют около 38% вариации переменной «электоральная активность».

2. Средняя ошибка составляет 3,38. Именно настолько «в среднем ошибается» построенная модель при прогнозировании уровня явки.

3. /л-отношение объясненной и необъясненной вариации состав­ляет 25,2 на уровне 0,000000003. Нулевая гипотеза о случайности выявленных связей отвергается.

4. Критерий /для константы и регрессионных коэффициентов пе­ременных «городское население» и «русское население» значим на уровне 0,0000001; 0,00005 и 0,007 соответственно. Нулевая гипотеза о случайности коэффициентов отвергается.

Дополнительная полезная статистика в анализе соотношения ис­ходных и предсказанных значений зависимой переменной - расстояние Махаланобиса и расстояние Кука. Первое - мера уникальности слу­чая (показывает, насколько сочетание значений всех независимых переменных для данного случая отклоняется от среднего значения по всем независимым переменным одновременно). Второе - мера влия­тельности случая. Разные наблюдения по-разному влияют на наклон линии регрессии, и с помощью расстояния Кука можно сопоставлять их по этому показателю. Это бывает полезно при чистке выбросов (вы­брос можно представить как чрезмерно влиятельный случай).

В нашем примере к уникальным и влиятельным случаям, в частно­сти, относится Дагестан.

Случай Исходные

значения

Предска­

значения

Остатки Расстояние

Махаланобиса

Расстояние
Адыгея 64,92 66,33 -1,40 0,69 0,00
Республика Алтай 68,60 69.91 -1,31 6,80 0,01
Республика Бурятия 60,75 65,56 -4,81 0,23 0,01
Республика Дагестан 79,92 71,01 8,91 10,57 0,44
Республика Ингушетия 75,05 70,21 4,84 6,73 0,08
Республика Калмыкия 68,52 69,59 -1,07 4,20 0,00

Собственно регрессионная модель обладает следующими парамет­рами: У-пересечение (константа) = 75,99; Ь (Гор. нас.) = -0,1; Ъ (Рус. нас.) = -0,06. Итоговая формула.


Top