Закон сохранения массы веществ химия формулировка. Закон сохранения массы в химии. Открытие закона

Продукты любой химической реакции состоят из тех же самых атомов, из которых состояли исходные вещества. При химических реакциях атомы сохраняются, значит должна сохраняться и масса всех атомов. В таком случае продукты любой химической реакции должны иметь такую же массу, как и исходные вещества.

После проведения некоторых опытов, может показаться, что утверждение о массе веществ неверно. Например, при прокаливании металлы превращаются в хрупкие окалины, масса которых всегда больше массы металлов до опыта. Но почему? Может быть, какие-либо частицы из воздуха присоединяются к металлу? М.В.Ломоносов нашёл ответ на этот вопрос: он прокаливал металлы в закрытых сосудах. Металл превращался в окалину, и масса сосуда с окалиной оставалась такой же, как и масса сосуда с металлом. Получается, масса, которая содержится в сосуде воздуха, уменьшилась на столько, на сколько увеличилась масса металла.

Масса веществ, вступивших в химическую реакцию, всегда равна массе образовавшихся веществ.

Этот один из основных законов химии называется законом сохранения массы вещества. Впервые этот закон был сформулирован М.В. Ломоносовым так:

«Все перемены, в натуре случающиеся, такого суть состояния, что, сколько чего у одного тела отнимется, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте».

Из закона сохранения массы вещества следует, что вещества не могут возникать из ниоткуда и из ничего или превращаться в ничто. Даже, если нам кажется, что при химической реакции получается лишнее количество вещества или же масса вещества после химической реакции стала меньше, то это значит, что мы не учли всех участвующих в реакции или получающихся веществ.

Например, когда горит древесина нам кажется, что вещества, из которых она образована исчезают без следа. Но при тщательном изучении реакции можно увидеть, что это не так: масса веществ, затраченных при сгорании древесины (древесина + кислород), равна массе воды, золы и углекислого газа, которые получились при горении.

Пользуясь законом сохранения массы можно вычислить массу или одного вступившего в реакцию вещества или одного из полученных веществ, если известны массы всех остальных. Так, если необходимо узнать массу кислорода, получившегося при разложении определённого количества оксида ртути, то для этого нам не нужно собирать кислород для взвешивания. Достаточно определить массу участвующего в реакции оксида ртути и массу ртути, которая выделилась в результате реакции. Согласно закону сохранения массы сумма масс ртути и кислорода равняется массе разложившегося оксида ртути. Следовательно, вычитая из массы оксида ртути массу полученной ртути, мы получим массу выделившегося кислорода.

Например, решим такую задачу: мы взяли 2,56 г. оксида ртути, а после реакции получили 1,95 г. ртути. Какова масса образовавшегося в результате реакции кислорода?

Оксид ртути = ртуть + кислород

2, 56 = 1,95 + х

х = 2,56 – 1,95

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Урок №14. Закон сохранения массы вещества. Химические уравнения

Закон сохранения массы веществ

Проблемный вопрос: изменится ли масса реагирующих веществ по сравнению с массой продуктов реакции?

Чтобы ответить на данный вопрос пронаблюдайте за следующим экспериментом

Видео-эксперимент: .

Описание эксперимента: В коническую колбу помесите 2 грамма измельченной меди. Плотно закройте колбу пробкой и взвесьте. Запомните массу колбы. Осторожно нагревайте колбу в течение 5 минут и наблюдайте за происходящими изменениями. Прекратите нагревание, и когда колба охладится, взвесьте её. Сравните массу колбы до нагревания с массой колбы после нагревания.

Вывод: Масса колбы после нагревания не изменилась.

Пронаблюдаем за другими видео-экспериментами:

Вывод: Масса веществ до и после реакции не изменилась.

Формулировка закона сохранения массы: масса веществ, вступивших в реакцию, равна массе образовавшихся веществ.

С точки зрения атомно-молекулярного учения этот закон объясняется тем, что при химических реакциях общее количество атомов не изменяется, а происходит лишь их перегруппировка.

Закон сохранения массы веществ является основным законом химии, все расчеты по химическим реакциям производятся на его основе. Именно с открытием этого закона связывают возникновение современной химии как точной науки.

Закон сохранения массы был теоретически открыт в 1748 году и экспериментально подтверждён в 1756 году русским ученым М.В. Ломоносовым.

Французский учёный Антуан Лавуазье в 1789 году окончательно убедил учёный мир в универсальности этого закона. Как Ломоносов, так и Лавуазье пользовались в своих экспериментах очень точными весами. Они нагревали металлы (свинец, олово, и ртуть) в запаянных сосудах и взвешивали исходные вещества и продукты реакции.

Химические уравнения

Закон сохранения массы веществ применяется при составлении уравнений химических реакций.

Химическое уравнение – это условная запись химической реакции посредством химических формул и коэффициентов.

Посмотрим видео - эксперимент : .

В результате химического взаимодействия серы и железа получено вещество – сульфид железа (II ) – оно отличается от исходной смеси. Ни железо, ни сера не могут быть визуально обнаружены в нем. Невозможно их разделить и с помощью магнита. Произошло химическое превращение.

Исходные вещества, принимающие участие в химических реакциях называются реагентами.

Новые вещества, образующиеся в результате химической реакции называются продуктами.

Запишем протекающую реакцию в виде уравнения химической реакции:

Fe + S = FeS

Алгоритм составления уравнения химической реакции

Составим уравнение химической реакции взаимодействия фосфора и кислорода

1. В левой части уравнения записываем химические формулы реагентов (веществ, вступающих в реакцию). Помните! Молекулы большинства простых газообразных веществ двухатомны – H 2 ; N 2 ; O 2 ; F 2 ; Cl 2 ; Br 2 ; I 2 . Между реагентами ставим знак «+», а затем стрелку:

P + O 2

2. В правой части (после стрелки) пишем химическую формулу продукта (вещества, образующегося при взаимодействии). Помните! Химические формулы необходимо составлять, используя валентности атомов химических элементов:

P + O 2 → P 2 O 5

3. Согласно закону сохранения массы веществ число атомов до и после реакции должно быть одинаковым. Это достигается путём расстановки коэффициентов перед химическими формулами реагентов и продуктов химической реакции.

    Вначале уравнивают число атомов, которых в реагирующих веществах (продуктах) содержится больше.

    В данном случае это атомы кислорода.

    Находим наименьшее общее кратное чисел атомов кислорода в левой и правой частях уравнения. Наименьшее кратное для атомов натрия –10:

    Находим коэффициенты путём деления наименьшего кратного на число атомов данного вида, полученные цифры ставим в уравнение реакции:

    Закон сохранения массы вещества не выполнен, так как число атомов фосфора в реагентах и продуктах реакции не равно, поступаем аналогично ситуации с кислородом:

    Получаем окончательный вид уравнения химической реакции. Стрелку заменяем на знак равенства. Закон сохранения массы вещества выполнен:

4 P + 5O 2 = 2P 2 O 5

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

1.

Преобразуйте следующие схемы в уравнения химических реакций расставив необходимые коэффициенты и заменив стрелки на знак равенства:

Zn + O 2 → ZnO

Fe + Cl 2 → FeCl 3

Mg + HCl → MgCl 2 + H 2

Al(OH) 3 → Al 2 O 3 + H 2 O

HNO 3 → H 2 O+NO 2 +O 2

CaO+H 2 O→ Ca(OH) 2

H 2 +Cl 2 → HCl

KClO 3 → KClO 4 +KCl

Fe(OH) 2 +H 2 O+O 2 → Fe(OH) 3

KBr + Cl 2 KCl + Br 2

2.

Используя алгоритм составления уравнений химических реакций, составьте уравнения реакций взаимодействия между следующими парами веществ:
1) Na и O 2
2) Na и Cl
2
3) Al и S

В уроке 11 «» из курса «Химия для чайников » дадим определение закону сохранения массы и закону сохранения энергии, познакомимся с открытием Ломоносова, а также повторим некоторые основы химии из прошлой главы. Этим уроком мы открываем следующий раздел курса, под названием «Закон сохранения массы и энергии». Поэтому, чтобы у вас не возникало вопросов по урокам, обязательно изучите все уроки из первого раздела «Атомы, молекулы и ионы».

Мысль о том, что все в мире состоит из атомов, зародилась еще до нашей эры. Древнегреческий философ Демокрит полагал, что вся материя состоит из неделимых микрочастиц — атомов, что каждый атом обладает индивидуальными свойствами, что свойства веществ определяются их взаимным расположением относительно друг друга. Таким образом его идеи являются примитивным вариантом того, что изложено в разделе 1 «Атомы, молекулы и ионы». Напрашивается вопрос: почему же тогда древние греки не воспользовались гипотезой Демокрита и не научились получать атомную энергию? Почему прошло еще 2000 лет, прежде чем наука достигла своего современного уровня? Одна из причин заключалась в том, что древние греки понятия не имели о законах сохранения вещества , ну и конечно же о законе сохранения энергии.

Великий русский ученый М.В. Ломоносов в 1748 году стал первым, кто осознал, что масса является фундаментальным свойством, сохраняющимся в процессе химических реакций. Он установил закон который гласит, что суммарная масса всех продуктов химического превращения должна точно совпадать с суммарной массой исходных веществ. Помимо суммарной массы веществ, в химических реакциях сохраняется также число атомов каждого сорта независимо от того, в сколь сложных превращениях они участвуют и как переходят из одних молекул в другие.

В химических реакциях должна сохраняться также и энергия. Химически важный вывод из этого закона заключается в том, что поглощение или выделение тепла (теплота реакции) в конкретной химической реакции не зависит от того, каким путем осуществляется реакция — в одну или несколько стадий. Например, тепло, выделяющееся напрямую при сгорании газообразного водорода и графита (одна из форм углерода), должна совпадать с теплом, выделяющимся, когда водород и углерод используются для получения синтетического бензина, а заем этот бензин используется в качестве топлива. Если бы количество тепла, выделяемого в одной из двух описанных выше вариантов реакции, было неодинаковым, можно было бы воспользоваться этим и проводить более эффективную реакцию в одном направлении, а менее эффективную — в обратном. В результате получился бы циклический бестопливный источник тепла, непрерывно дающий даровую энергию. Но это всего лишь мечты о вечном двигателе, создание которого разрушается об незыблемую стену закона сохранения массы и энергии.

: в процессе химической реакции не происходит образования или разрушения атомов.

Закон сохранения энергии : если сумма двух реакций представляет собой новую, третью реакцию, то теплота третьей реакции равна сумме теплот первых двух реакций. Говорят, что тепловые эффекты реакций аддитивны. Более подробно о законе сохранения тепла вы узнаете в конце данной главы, где все станет просто и ясно.

Кстати, в 1756 году Ломоносов экспериментально подтвердил химический закон сохранения массы, путем обжига металлов в запаянных сосудах. Вместо обжига металлов можно в запаянном сосуде сжечь фтор, закон сохранения массы все равно соблюдается:

Повторюсь, что не плотность или объем, а именно масса является фундаментальным свойством, сохраняющимся в процессе химических реакций. И как только химики это поняли, они сразу бросились в поиски правильной шкалы атомных масс для каждого элемента. В уроке 3 «Строение молекулы» мы отмечали, что молекулярная масса молекулы вычисляется через сумму всех атомных масс входящих в ее состав атомов. А из урока 5 «Моль и молярная масса» нам известно, что моль любого вещества — это такое его количество, в котором число частиц этого вещества равно 6,022·10 23 . Масса одного моля вещества в граммах называется молярной массой . Моль и молярная масса являются важнейшими понятиями, без которых невозможно проводить химический расчет.

Моль — это просто средство подсчитывать атомы и молекулы порциями по 6,022·10 23 . Если известно, что две молекулы газообразного водорода H 2 реагируют с одной молекулой газообразного кислорода O 2 , с образованием двух молекул воды H 2 O, то можно предсказать, что 2 моля H 2 , т.е. 4,032 г, будут реагировать с 1 молем O 2 , т.е. с 31,999 г, с образованием 2 молей H 2 O, т.е.36,031 г). Контрольное суммирование 4,032+31,999=36,031 подтверждают, что в этой реакции выполняется химический закон сохранения массы.

Урок 11 «Формулировка закона сохранения массы и энергии » является повторением уже пройденного материала перед погружением в более серьезный раздел химии. Надеюсь вы открыли в этом уроке для себя что-то новое и интересное. Если у вас возникли вопросы, пишите их в комментарии.

Знаменитый английский химик Роберт Бойль при выполнении различных опытов с металлами заметил, что при сильном нагревании металлов на воздухе их масса увеличивается. В итоге ученый предположил, что в результате химической реакции, протекающей при нагревании, масса веществ должна меняться. Роберт Бойль считал, что при нагревании металлы реагируют с некоей «огненной материей», содержащейся в пламени. «Огненную материю» называли флогистоном.

Русский ученый Михаил Васильевич Ломоносов, изменил постановку эксперимента, и нагревал металлы не на открытом воздухе, а в герметично запаянных стеклянных ретортах. При постановке эксперимента таким способом, масса реторты с металлом до и после нагревания оставалась прежней.

При вскрытии такой реторты оказалось, что металл частично превратился в другое вещество, которое покрывало поверхность металла. Следовательно, металл прореагировал с воздухом, который находился в реторте. М.В. Ломоносов сделал очень важный вывод. Если общая масса реторты до и после прокаливания не изменялась, значит, масса содержащегося в сосуде воздуха уменьшилась на столько же, на сколько увеличилась масса металла (за счет образования нового вещества на его поверхности).

Масса воздуха в реторте действительно уменьшалась, так как при ее вскрытии воздух «врывался» в реторту со свистом.

Таким образом, был сформулирован закон сохранения массы:

Масса веществ, вступивших в химическую реакцию равна массе веществ, полученных в результате реакции

Открытие закона сохранения массы нанесло серьезный удар ошибочной теории флогистона, что способствовало дальнейшему бурному развитию химии. Из закона сохранения массы следует, что вещества не могут возникать из ничего, и превращаться в ничто. Вещества только превращаются друг в друга.

Например, при горении свечи ее масса уменьшается. Можно предположить, что вещество, из которого изготовлена свеча, исчезает бесследно. На самом деле это не так. В данном случае не учтены все вещества, которые участвуют в химической реакции горения свечи.

Свеча горит из-за того, что в воздухе присутствует кислород. Следовательно, вещество, из которого изготовлена свеча – парафин, реагирует с кислородом. При этом образуется углекислый газ и пары воды – это продукты реакции. Если измерить массы продуктов реакции, углекислого газа и паров воды, то их масса будет равна массе парафина и кислорода, которые прореагировали. В данном случае продукты реакции просто нельзя увидеть.

В лаборатории доказать закон сохранения массы можно следующим образом. Необходимо поместить в колбу какое-либо вещество, способное реагировать с кислородом. Колбу герметично закрыть пробкой и взвесить. Далее следует нагреть колбу. При нагревании вещество прореагирует с кислородом, содержащимся в воздухе. Когда колба остынет, снова ее взвесить. Масса колбы останется прежней.

Закон сохранения массы открыт М.В. Ломоносовым в 1748 году. В 1773 году, такие же результаты опытов, независимо от Ломоносова, получил французский химик Антуан Лоран Лавуазье.

Расчеты при помощи закона сохранения массы

Пользуясь законом сохранения массы, можно вычислить массу или одного из вступивших в реакцию веществ, или одного из полученных веществ, если известны массы всех остальных веществ.

При сгорании железа в кислороде, образуется так называемая железная окалина. Какова масса железной окалины, если в реакцию вступило 5,6 г железа и 3,2 г кислорода?

Из закона сохранения массы следует, что суммарная масса железа и кислорода (реагентов) равна массе железной окалины (продукта). Следовательно, масса железной окалины равна 5,6 г + 3,2 г = 8,8 г.

Рассмотрим другой пример. При пропускании электрического тока через воду, вода разлагается на простые вещества – водород и кислород. Какова масса кислорода, если из 12 г воды получено 1,3 г водорода?

Для наглядности составим схему протекающего процесса, массу кислорода обозначим как X грамм:

  • Закон сохранения массы вещества открыт русским ученым М.В. Ломоносовым
  • Формулировка закона сохранения массы : масса веществ, вступивших в химическую реакцию, всегда равна массе веществ полученных в результате реакции

М. В. Ломоносов впервые сформулировал закон сохранения массы вещества в 1748г., а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756г. Современная формулировка закона такова:

Независимо от Ломоносова это закон был установлен в 1789г. французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

Закон сохранения массы веществ М. В. Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как все общий закон природы. Ломоносов писал:

«Все перемены в натуре случающиеся такого суть состояния, что, сколько чего у одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своей силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает».

Взгляды Ломоносова были подтверждены современной наукой. В 1905г. А. Эйнштейн показал, что между массой тела (m

) и его энергией (E

) существует связь, выражаемая уравнением:

– скорость света в вакууме.

Закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Свойства элементов VA и VIA.
Цель работы: изучение химических свойств элементов - азота, фосфора, кислорода и серы. Азот и фосфор являются элементами VA группы периодической системы. На внешнем энергетическом уровне атомов...


Top