Зарождение жизни. Как на Земле зародилась жизнь

История жизни на Земле началась с момента появления первых живых организмов — примерно 3,7 миллиарда лет назад — и продолжается по сей день. Сходство между всеми организмами указывают на наличие общего предка, из которого все известные виды разошлись в процессе эволюции.

Цианобактериальные маты и археи были доминирующей формой жизни в начале архейского эона и были огромным эволюционным шагом того времени. Кислородный фотосинтез, появившийся тогда, около 3500000000 лет назад, в конечном итоге привел к оксигенации атмосферы, начиная примерно с 2400 млн лет назад. Первые свидетельства эукариот датируется 1850 млн лет назад, хотя, возможно, они появились раньше, их диверсификация ускорилась, когда они начали использовать кислород в метаболизме. Позже, около 1700000000 лет назад, стали появляться многоклеточные организмы с дифференцированными клетками выполнения специализированных функций.

Примерно 1200 млн лет назад появляются первые водоросли, а уже примерно 450 млн лет назад — первые высшие растения. Беспозвоночные животные появились в едиакарскому периоде, а позвоночные возникли около 525 000 000 лет назад во время кембрийского взрыва.

Возникновение жизни на Земле

В соответствии с современной концепцией мира РНК, рибонуклеиновая кислота (РНК) была первой молекулой, которая обладала способностью к самовоспроизведению. Могли пройти миллионы лет, прежде чем на Земле появилась первая такая молекула. Но после ее образования на нашей планете появилась возможность возникновения жизни.

Молекула РНК может работать как фермент, соединяя свободные нуклеотиды в комплементарную последовательность. Таким способом происходит размножение РНК.

Но эти химические соединения еще нельзя назвать живыми существами, поскольку они не имеют границ тела. Любой живой организм имеет следующие границы. Только внутри изолированного от внешнего хаотического движения частиц тела могут происходить сложные химические реакции, которые позволяют существу питаться, размножаться, двигаться и т. Д.

Появление изолированных полостей в океане довольно частым явлением. Их образуют жирные (алифатические) кислоты, которые попадают в воду. Все дело в том, что один конец молекулы гидрофильный, а другой — гидрофобный. Жирные кислоты, которые попадают в воду, образуют сферы таким образом, что гидрофобные концы молекул находятся внутри сферы. Возможно, молекулы РНК начали попадать в такие сферы.

Первый обмен веществ

Способность к самовоспроизведению и наличие границ тела — это еще не все признаки, которые отличают живое существо от неживой природы. Для воспроизведения внутри сферы из жирных кислот, молекулы РНК нужно было наладить процесс обмена веществ. Известно, что молекула РНК способна притягивать нужные нуклеотиды и отталкивать нужны. Поэтому ей ничего не мешало сделать это через мембрану. Скорее всего, процесс происходил так: нужен нуклеотид привлекался к мембране вплотную, как только он приближался на достаточно близкое расстояние, то начинал отталкивать от себя молекулы жирных кислот, из-за чего образовался проем по размерам нуклеотида, после чего он свободно проходил через него и присоединялся к создаваемому цепочки.

Первый деление клетки

Как начали делиться первые клетки, состоящие из молекулы РНК и мембраны из жирных кислот, в настоящее время неизвестно. Возможно, построенная внутри мембраны новая молекула РНК начинала отталкиваться от первой. В конце концов, одна из них прорывала мембрану. Вместе с молекулой РНК выходила и часть молекул жирных кислот, которые образовывали вокруг нее новую сферу.

докембрий

Докембрий длился около 3800000000 лет. В течение этого отрезка времени на Земле произошли значительные изменения: кора остыла, появились океаны и, что самое важное, появилось примитивная жизнь. Однако следы этой жизни в палеонтологической летописи редки, поскольку первые организмы были мелкими и не имели твердых оболочек.

На докембрий приходится большая часть геологической истории Земли. При этом его хронология разработана гораздо хуже, чем на следующий за ним фанерозоя. Причина этого в том, что органические остатки в докембрийских отложениях встречаются крайне редко, что является одной из характерных особенностей этих древних геологических образований. Поэтому палеонтологический метод изучения нельзя применять для докембрийских толщ.

архей

Охватывает временной промежуток 4,6-2,5 млрд лет назад.

Исследование метеоритов, горных пород и других материалов того времени показывают, что наша планета сформировалась примерно 4600000000 лет назад. К этому времени вокруг Солнца был только размытый диск, состоящий из газа и космической пыли. Затем, под действием силы тяжести пыль начал собираться в небольшие тела, которые со временем превратились в планеты.

В течение миллионов лет на Земле не существовало никаких форм жизни. После архейского эпизода расплавления верхней мантии и ее перегрева с возникновением в этой геосфере магматического океана вся начальная поверхность Земли вместе с ее первичной и сначала плотной литосферой очень быстро погрузилась в расплавы верхней мантии. Атмосфера в то время не была плотной и состояла из таких газов, как аммиак (NH 3), метан (CH 4), водород (H 2), хлор (Cl 2), пары серы. Температура ее достигала 80 ° C. Естественная радиоактивность была намного выше сегодняшней. Жизнь в таких условиях было невозможно.

4 млрд лет назад Земля столкнулась с планетой Тейя (ее размер был близок к размерам Марса). Столкновение было таким сильным, что образованные при столкновении обломки были выброшены в космос и образовали Луну. Образование Луны способствовало появлению жизни: он вызвал приливы, которые способствовали очищению и аэрации морей и стабилизировал ось вращения Земли.

Первые химические следы жизни возрастом около 3500000000 лет были обнаружены в горных породах Австралии (Пилбара). Возможно, жизнь зародилась именно в горячих источниках, где было много питательных веществ, в том числе и нуклеотидов.

Жизнь в археи развилось до бактерий и цианобактерий. Они вели придонный образ жизни: устилали дно моря тонким слоем слизи.

Катархей

Катархейський эон (др.-греч κατἀρχαῖος — «ниже древнейшего»), 4,6-3,8 миллиардов лет назад, известный как протопланетный этап развития Земли. Охватывает первую половину архея. Земля в то время была космическим телом без атмосферы и гидросферы. В таких условиях никакой жизни появиться не могло.

Во время катархею атмосфера не была плотной. Она состояла из газов и паров воды, появившиеся при столкновении Земли с астероидами.

В связи с тем, что Луна тогда был очень близко (всего на 17 000 километров) к Земле, сутки продолжалась недолго — всего 6:00. Но, по мере удаления Луны, сутки начала увеличиваться.

Эоархей

Охватывает время 4-3,6 млрд лет назад. Возможно, прокариоты появились уже в конце Эоархей. Кроме того, в еоархея относятся древнейшие геологические породы — формация Исуа в Гренландии.

палеоархея

Палеоархея (от др.-греч παλαιός — «старый» и ἀρχαῖος — «старый») продолжался с 3,6 по 3200000000 лет назад. В Австралии найдена древнейшая форма жизни, относится к этой эры — хорошо сохранившиеся остатки бактерий возрастом 3460000000 лет.

мезоархея

Мезоархея (от др.-греч μέσος — «средний» и ἀρχαῖος — «старый») продолжался 3,2-2,8 млрд лет назад. В мезоархеи уже встречаются строматолиты.

неоархей

Неоархей охватывает временной промежуток 2,8-2,5 млрд лет назад. В эту эру появился кислородный фотосинтез, который стал причиной кислородной катастрофы, которая произошла в палеопротерозоя. В этой эре активно развиваются бактерии и водоросли.

протерозойской эон

Охватывает временной промежуток 2500000000 — 543 млн лет назад. Протерозой (греч. Πρότερος — первый, старший, греч. Ζωή — жизнь) ознаменовался возникновением сложных растений, грибов и животных (например, губок). Жизнь в начале протерозоя, как и раньше, было сосредоточено в морях, так как условия на суше были не совсем благоприятными: атмосфера состояла преимущественно из сероводорода, CO 2, N 2, CH 4, и совсем малого количества O 2.

Однако, бактерии, которые жили в то время в морях, начали производить O 2 в качестве побочного продукта, и 2 млрд лет назад количество кислорода уже достигла устойчивого уровня. Но резкое увеличение количества кислорода в атмосфере привело к кислородной катастрофы, которая вызвала изменения органов дыхания у организмов, населявших в то время океаны (анаэробные изменились аэробными) и изменение состава атмосферы (образование озонового слоя). Вследствие ослабления парникового эффекта на Земле наступило длительное гуронское оледенение: температура опускалась до -40 ° С.

Дальнейшие ископаемые остатки первых многоклеточных встречаются уже после оледенения. В то время океаны населяли такие червеобразные животные, как сприггина (Spriggina). Такие животные, возможно, стали предками современных животных.

палеопротерозой

Палеопротерозой — геологическая эра, часть протерозоя, которая началась 2500000000 лет назад и закончилась 1600000000 лет назад. В это время состоялась первая стабилизация континентов. Эволюционировали цианобактерии — тип бактерий, использовал биохимический процесс фотосинтеза для производства энергии и кислорода.

Важнейшее событие раннего палеопротерозоя — кислородная катастрофа. К значительному повышению содержания кислорода в атмосфере почти все формы жизни, которые существовали в то время, были анаэробами, то есть обмен веществ в живых формах зависел от форм клеточного дыхания, не нуждались в кислороде. Кислород в больших количествах является губительным для большинства анаэробных бактерий, поэтому в настоящее время большая часть живых организмов на Земле исчезла. Формы жизни, которые остались, были или невосприимчивыми к действию кислорода, или жили в бескислородной среде.

мезопротерозой

Мезопротерозой — геологическая эра, часть протерозоя, которая началась 1600000000 лет назад и закончилась 1000000000 лет назад.

неопротерозоя

Неопротерозоя — геологическая эра (последняя эра протерозоя), которая началась 1000 млн лет назад и закончилась 542 млн лет назад. С геологической точки зрения характеризуется распадом древнего суперконтинента Родиния как минимум на 8 фрагментов, в связи с чем прекращает свое существование древней суперокеан Мировия. Во время криогению началось масштабное оледенение Земли — лед достигал экватора (Земля-снежок).

До позднего неопротерозою (Эдиакара) относятся древнейшие ископаемые остатки живых организмов, поскольку именно в это время в живых организмов начинает появляться что-то вроде твердой оболочки или скелета.

фанерозой

Фанерозойский эон (др.-греч φανερός ζωή — «явное жизни») начался примерно 543 млн лет назад и продолжается в наше время. В фанерозое появлялись и вымирали самые существа, в том числе гигантские насекомые и динозавры.

палеозойская эра

В начале палеозоя (греч. Πᾰλαιός — давний, греч. Ζωή — жизнь) появились животные с твердым наружным скелетом.

кембрийский период

Охватывает временной промежуток 543-490 млн лет назад. В кембрийский период внезапно появляется огромное разнообразие живых организмов — предков нынешних представителей многих подразделений царства животных (в отложениях, которые предшествовали кембрия, остатки таких организмов отсутствуют). Эта внезапная в геологическом масштабе событие, которое в реальности длилась миллионы лет, известная в науке как кембрийский взрыв.

Ископаемые остатки животных кембрийского периода находят довольно часто и во всем мире. В начале кембрийского периода (около 540 млн лет назад) в некоторых групп животных появляется сложно построенное глаз. Появление этого органа была огромным эволюционным шагом — теперь животные могли видеть окружающий мир. Так, жертвы теперь могли видеть охотников, а охотники — своих жертв.

В кембрийском периоде на суше жизни не существовало. Но океаны были густо населены беспозвоночными, например, губками, трилобитами, аномалокарамы. Время от времени огромные подводные оползни захоранивали группы морских существ под тоннами ила. Благодаря этим сдвигам мы можем наглядно представить себе, каким необычным был животный мир кембрийского периода, ведь в иле прекрасно сохранились в виде окаменелостей даже нежные мягкотелые животные.

В морях позднего кембрийского периода основными группами животных были членистоногие, иглокожие и моллюски. Но самым важным жителем морей того времени была бесчелюстные существо хайкоуихтис — у нее кроме глаз развилась хорда.

ордовикский период

Охватывает промежуток времени 490-443 млн лет назад. Во время ордовика суша оставалась необжитой, за исключением лишайников, которые первыми из растений стали жить на суше. Но основная жизнь развивалось достаточно активно в морях.

Основными жителями ордовикский морей были членистоногие, такие как мегалограпт. Они могли ненадолго выходить на сушу, чтобы отложить икру. Но были и другие жители, например, представитель класса головоногих ортокон камероцерас.

Позвоночные животные в ордовике сформировались еще не до конца. В морях плавали потомки хайкоуихтиса, в которых было образование, напоминавшей позвоночник.

Также в морях ордовикского периода жили представители кишечнополостных, иглокожих, кораллов, губок и других беспозвоночных.

силурийский период

Охватывает промежуток времени 443-417 млн ​​лет назад. В силуре на сушу выходят некоторые растения, например, куксония (Coocsonia), которые достигали в высоту не более 10 см, и некоторые виды лишайников. В некоторых членистоногих развились примитивные легкие, которые позволяли им дышать атмосферным воздухом, например, скорпион бронтоскорпио мог находиться на суше в течение четырех часов.

В морях через миллионы лет формируются огромные коралловые рифы, где находили приют мелкие ракообразные и членистоногие. В этом периоде членистоногие становятся еще больше, например, ракоскорпион птеригот мог достигать 2,5 метров в длину, однако, он был слишком большим, чтобы выползать на сушу.

В силурийских морях появляются полностью сформированы позвоночные животные. В отличие от членистоногих, у позвоночных был костяной хребет, позволявший им лучше маневрировать под водой.

девонский период

Охватывает промежуток времени 417-354 млн лет назад.

В девоне жизнь продолжает активно развиваться на суше и в море. Появляются первые примитивные леса, состоящие в основном из древнейших примитивных древовидных папоротников археоптерисив (Archaeopteris), которые росли в основном на берегах рек и озер.

Основное жизни в раннем девоне было представлено в основном Mesothelae и многоножками, которые дышали всей поверхностью тела и жили в очень влажных местах. Однако, к концу девона в древних артроподов появляется хитиновый панцирь, сокращается количество сегментов тела, четвертая пара лап превращается в усики и челюсти, в некоторых также развились крылья. Так появилась новая эволюционная ветвь — насекомые, которая смогла освоить самые разнообразные уголки планеты.

В середине девона на сушу ступили первые амфибии (например, гинерпетон, ихтиостега). Они не могли жить вдали от воды, так как их кожа была еще очень тонкой и незащищенной от пересыхания. К тому же, амфибии могли размножаться только при наличии воды — икринками. Вне воды потомство амфибии погибло бы: икру высушило бы солнце, ведь она не защищена никакой оболочкой, кроме тонкой пленки.

У рыб развились челюсти, которые позволяли им ловить быстрых жертв. Они начали стремительно увеличиваться в размерах. Уже к концу девона в морях появились первые костные рыбы, такие как гигантская хищная гинерия. Однако наиболее грозными обитателями девонских морей были представители группы плакодерм, такие как дунклеостей и динихтис, достигавшие в длину 8-10 метров.

каменноугольный период

Охватывает промежуток времени от 354-290 млн лет назад. В каменноугольном периоде почти по всей планете климат был жаркий и влажный. В болотистых лесах того времени росли преимущественно хвощи, древовидные папоротники и гигантские лепидодендроны, которые достигали в высоту от 10 до 35 метров, и в диаметре ствола — до одного метра.

Фауна была представлена ​​огромным количеством существ. Большое количество тепла, влаги и кислорода способствовала увеличению размера членистоногих, так, например, артроплевра могла достигать 2,5 метров в длину, а огромная стрекоза меганевра — 75 см в размахе крыльев.

Такие условия способствовали и расцвета амфибий. Они (например, протерогиринус) заняли все прибрежные области, практически окончательно вытеснив двоякодышащих и кистеперых. В каменноугольном периоде амфибии дали начало рептилиям. Первые рептилии были очень маленькими животными, которые напоминали современных ящериц, например, длина петролакозавра не превышала 40 сантиметров в длину. Рептилии могли откладывать яйца на суше — это было большим эволюционным шагом, к тому же их кожа была покрыта плотной чешуей, которая защищала кожу животного от высыхания, а следовательно, они могли спокойно отходить далеко от воды. Наличие таких приспособительных особенностей и определила их дальнейшее эволюционное успех в качестве наземных животных.

В морях каменноугольного периода также было много форм жизни. Акулы и костные рыбы (предки большинства современных рыб) доминировали в толще воды, а морское дно покрывали многочисленные коралловые рифы, которые простирались на многие километры вдоль побережья древних материков.

Конец карбона, около 290 млн лет назад, отметил длительный ледниковый период, который закончился в начале пермского периода. Ледники медленно подбирались к экватору с севера и юга. Многочисленные животные и растения не смогли приспособиться к таким климатическим условиям и вскоре вымерли.

Пермский период

Охватывает промежуток времени 290-248 млн лет назад. Через ледниковый период в конце карбона в пермском периоде климат стал холоднее и суше. Пышные тропические леса, болота изменились бескрайними пустынями и засушливыми равнинами. В таких условиях росли только самые стойкие растения — папоротники и примитивные хвойные.

Вследствие исчезновения болот резко сократилось количество амфибий, поскольку они могли жить только рядом с водой (например, амфибия-рептилиоморф сеймурия). Место амфибий заняли рептилии, поскольку они были хорошо приспособлены к жизни в сухом климате. Рептилии начали быстро увеличиваться в размере и численности, им удалось расселиться по всей суше, они дали начало таким крупным наземным животным, как пеликозавры (например, Диметродон и едафозавры). За холодного климата в таких рептилий развился парус, который помогал им регулировать температуру тела.

В эпоху поздней перми образовался единый суперконтинент — Пангея. В местах с особо сухим и жарким климатом начало образовываться все больше пустынь. В это время пеликозавры дали начало терапсид — звероподобным ящерам. Они отличались от своих предков прежде всего тем, что имели отличную от них строение зубов; во-вторых, эта группа имела гладкие кожные покровы (в процессе эволюции чешуя у них так и не развилась) в-третьих, у некоторых представителей этой группы развились вибрисы (а позже и шерстяной покров). Ряд терапсид включал как кровожадных хищников (например, горгонопсы), так и роющих растительноядных животных (например, дииктодона). Кроме терапсид на суше жили и представители семейства пареязаврив, например, покрытый толстой броней скутозавр.

В конце пермского периода климат стал намного суше, что привело к сокращению площади прибрежных зон с густой растительностью и увеличение площади пустынь. В результате из-за нехватки жизненного пространства, корма и кислорода, который производился растениями, многие виды животных и растений вымерли. Эта эволюционная событие получило название массового пермского вымирания, в процессе которого вымерло 95% всех живых существ. Ученые до сих пор спорят о причинах этого вымирания, и выдвигают некоторые гипотезы:

  1. Падение одного или нескольких метеоритов, или столкновения Земли с астероидом диаметром в несколько десятков километров (одним из доказательств этой теории является наличие 500-километрового кратера в районе Земли Уилкса;
  2. Усиление вулканической активности;
  3. Внезапный выброс метана со дна моря;
  4. Извержение трапов (базальтов), сначала относительно небольших Емейшанських трапов около 260 млн лет назад, затем колоссальных Сибирских трапов 251 млн лет назад. С этим могли быть связаны вулканическая зима, парниковый эффект из-за выброса вулканических газов и другие климатические изменения, которые повлияли на биосферу.

Однако, эволюция на этом не прекратилась: через некоторое время виды живых существ, которые выжили, дали начало новым, еще более удивительным формам жизни.

Мезозойская эра

Во время мезозоя на Земле обитали разнообразные причудливые организмы. Самые известные из них — динозавры. Они доминировали на протяжении 160 млн лет на всех континентах. Они имели самые разнообразные размеры: от совсем крошечного микрораптора, который достигал всего 70 см в длину и веса 0,5 кг, к гигантскому амфицелиаса, достигавший в длину 50 метров, а массы 150 тонн. В то время на Земле было большое разнообразие форм жизни, которые продолжали эволюционировать и совершенствоваться.

триасовый период

Охватывает временной промежуток 248-206 млн лет назад. В начале триасового периода жизни на планете продолжало медленно восстанавливаться после массового вымирания видов в конце пермского периода. Климат большей части земного шара был жарким и сухим, но достаточное количество осадков вполне могла обеспечить достаточно большое разнообразие растений. Наиболее распространенными в триасе были примитивные хвойные, папоротники и гинкговые, ископаемые остатки которых встречаются во всем мире, даже в полярных областях Земли.

Животные, которые пережили пермское массовое вымирание видов, оказались в очень выигрышной ситуации — ведь на планете почти не осталось ни их пищевых конкурентов, ни крупных хищников. Численность растительноядных рептилий начала быстро расти. То же самое произошло и с некоторыми хищниками. Вскоре большинство животных дали начало многочисленным новым и необычным видам рептилий. В раннем триасовом периоде некоторые рептилии вернулись жить в воду от них пошли нотозавры и другие полуводные существа.

В начале триасового периода жил и возможный предок динозавров — еупаркерия. Характерной особенностью еупаркерии от других ящериц было то, что она могла вставать и бегать на задних лапах.

В позднем триасовом периоде (227-206 млн лет назад) на Земле произошли события, которые определили развитие жизни в течение всей следующей части эры динозавров. В результате раскола гигантского суперконтинента Пангеи образовалось несколько материков. До позднего триаса на суше господствовали звероподобные (терапсиды) рептилии, представленные, например, плацериасом и листрозавром, а также несколько других групп причудливых пресмыкающихся, к которым относились танистрофей и протерозух. Но за сравнительно короткое время численность терапсид сильно сократилась (за исключением группы цинодонтов, которые дали начало млекопитающим). Их место заняли рептилии — архозавры, три основные группы которых вскоре стали господствующими. Этими группами животных были динозавры, птерозавры и крокодиломорфы рептилии. Быстро эволюционировали и морские рептилии, предки гигантских ихтиозавров.

Конец триасового периода отметило новое массовое вымирание видов, как и аналогичное событие в конце перми. Его причины остаются загадкой. В свое время ученые связывали его с падением на Землю астероида, оставившего после падения огромный кратер Маникуаган (Канада) диаметром 100 км, но, как оказалось, это событие произошло гораздо раньше.

Юрский период

Охватывает промежуток времени 206-144 млн лет назад. В раннем юрском периоде (206-180 млн лет назад) климат на Земле стал более теплым и влажным. В приполярных районах поднялись хвойные леса, а тропики покрылись зарослями хвойных растений, папоротников и саговников. По мере того, как континенты медленно расходились, в некоторых низменных уголках планеты формировался муссонный климат; образовались большие речные бассейны, которые регулярно затапливались водой. В раннем юрском периоде динозавры и птерозавры быстро увеличиваются в размерах, становятся более многочисленными и разнообразными и начинают расселяться по всему земному шару. Не отстают от них и морские рептилии (ихтиозавры и плезиозавры), а также моллюски (например, аммониты).

В среднем и позднем юрском периоде (180-144 млн лет назад) климат в некоторых тропических частях мира стал сухим. Возможно, изменение климата и была причиной того, что многие динозавры начали быстро превращаться в настоящих гигантов. Среди растительноядных динозавров — завропод — появляются диплодоки, брахиозавры и другие, а среди хищников — теропод — огромный алозавр. Но по суше бродили и представители других групп динозавров (например, стегозавры и отниелия). Крылатые птерозавры были представлены как рыбоядные видами (например, рамфоринхи), так и крошечными насекомоядными рептилиями (например, анурогнатом).

Теплые юрские моря изобиловали планктоном, который был кормом лидзихтисови и другим крупным рыбам. Хищные плезиозавры были представлены длинношеим криптоклидом и гигантским лиоплевродоном; в мелководных морях охотились древние морские крокодиломорфы (например, метриоринх).

меловой период

Охватывает временной промежуток 144-65 млн лет назад. В меловом периоде климат на планете по-прежнему оставался теплым; благодаря большому количеству сезонных дождей почти весь земной шар — от экватора до приполярных областей — была покрыта пышной растительностью. В позднем юрском периоде появились привычные сегодня цветочные (покрытосеменные) растения, а в меловом периоде они стали уже одной из господствующих групп растений на планете. В конце мелового периода цветочные вытеснили во многих регионах хвойные, папоротники и саговники, заявив свои права на господствующее положение в мире растений, которые они окончательно утвердят в кайнозойскую эру.

В результате различия континентов образовывались все новые протоки, моря и океаны, которые усложняли свободное перемещение животных по планете. Медленно на континентах начали появляться собственные виды растений и животных.

Меловой период был эпохой гигантов. В Южной Америке жили Гигантозавр и аргентинозавр — самые наземные животные, которые когда-либо жили на Земле, а в Северной Америке — огромные хищные тираннозавры и рогатые торозавра. Среди динозавров появились и специализированные виды; велоцираптор и протоцератопс, например, приспособились к жизни среди песчаных дюн монгольских пустынь, а лелинозавр — в южной полярной области. Млекопитающие (например, дидельфодон), как по-прежнему не играли в жизни планеты какой-либо существенной роли; они оставались небольшими животными, но их численность (особенно к концу мелового периода) начала заметно увеличиваться.

Большие изменения произошли и в морях. Их бывшие владельцы (ихтиозавры и плиозавры) уступили место быстрым хищным рыбам (например, ксифактинови) и мозазавров — новой группе гигантских рептилий, включавшей, например, тилозавра.

Увеличились размеры крылатых ящеров птерозавров. Орнитохейрус, птеранодон и большие птерозавры преодолевали по воздуху огромные расстояния и, возможно, даже перелетали с континента на континент. В воздухе летали примитивные птицы (например, иберомезорнис) некоторые морские пернатые (как, например, гесперорнис) летать не умели, но имели огромные размеры. Конец мелового периода (примерно 65 млн лет назад) был отмечен новым массовым вымиранием видов, которое стерло с лица Земли около 40% от всех существующих в то время семейств животных. Исчезли птерозавры, аммониты и мозазавры, но самыми знаменитыми жертвами этой катастрофы были, конечно же, динозавры. Едва оправились после этого испытания и много других групп живых существ.

Существуют и другие теории, касающиеся мел-палеогенового вымирания, но их придерживается лишь небольшое количество ученых.

Но, в конце концов, 65 млн лет назад на смену мезозойской эре — «возраста рептилий», пришла кайнозойская эра — «возраст млекопитающих».

кайнозойская эра

Массовое вымирание видов 65 млн лет назад отметило начало новой — кайнозойской эры, которая продолжается и сегодня. В результате катастрофических событий тех далеких времен с лица нашей планеты исчезли все животные, по размеру больше, чем крокодил. А уцелевшие небольшие животные оказались с началом новой эры в совершенно другом мире. В кайнозое продолжалось дрейф (расхождение) континентов. На каждом из них формировались уникальные сообщества растений и животных.

палеогеновый период

Палеогеновый период — геологический период, первый в кайнозое. Начался 65 млн лет назад, закончился — 24600000 лет назад, длился 40400000 лет.

В палеогене климат был равномерным тропическим. Практически вся Европа была покрыта вечнозелеными тропическими лесами, и только в северных областях росли листопадные растения. Во второй половине палеогена климат становится более континентальным, появляются ледяные шапки на полюсах.

В этом периоде начался бурный расцвет млекопитающих. После вымирания большого количества рептилий возникли многочисленные свободные экологические ниши, которые начали занимать новые виды млекопитающих. Были распространены яйцекладущие, сумчатые и плацентарные. В лесах и лесостепях Азии возникла так называемая «индрикотериева фауна».

В воздухе господствуют виялохвости беззубые птицы. Широко распространены крупные бегающие хищные птицы (диатрем). Увеличивается разнообразие цветковых растений и насекомых.

В морях процветают костистые рыбы. Появляются примитивные китообразные, новые группы кораллов, морских ежей, фораминифер — нумулитиды достигают нескольких сантиметров в диаметре, очень много для одноклеточных. Вымирают последние белемниты, начинается расцвет головоногих с редуцированной раковиной, или совсем без нее — осьминогов, каракатиц и кальмаров, которые вместе с белемнитами объединяются в группу колеоидей.

палеоценовую эпоха

Охватывает промежуток времени 65-55 млн лет назад.

С наступлением палеоцена опустела планета начинает медленно восстанавливаться от последствий катастрофы. Первыми преуспели в этом растения. Всего через несколько сотен тысяч лет значительная часть земной суши покрылась непроходимыми джунглями и болотами; густые леса зашумели даже в приполярных областях Земли. Животные, которые пережили массовое вымирание видов, оставались небольшими; они ловко лавировали между стволами деревьев и лазили по ветвям. Крупнейшими животными планеты в то время были птицы. В джунглях Европы и Северной Америки, например, охотился хищник гасторнис, который достигал высоты 2,2 метров.

Вымирание динозавров позволило млекопитающим широко расселиться по планете и занять новые экологические ниши. В конце палеоцена (около 55 млн лет назад) их разнообразие резко увеличилось. На Земле появились предки многих современных групп животных — копытных, слонов, грызунов, приматов, рукокрылых (например, летучих мышей), китов, сирен. Понемногу млекопитающие начинают покорять земной шар.

Эоцен

Охватывает промежуток времени 55-34 млн лет назад. В начале эоцена значительная часть суши все еще была покрыта непроходимыми джунглями. Климат оставался теплым и влажным. По лесной подстилке бегали примитивные млекопитающие (крошечный лошадь пропалеотерий, лептиктидий и др.). На деревьях жила годиноция (один из древнейших приматов), а в Азии жил амбулоцетус — примитивный кит, умел ходить по суше.

Около 43 млн лет назад климат на Земле стал холоднее и суше. На значительной части планеты густые джунгли уступили место редколесью и пыльным равнинам. Жизнь на открытой местности способствовало увеличению размеров млекопитающих.

Азия стала родиной гигантских бронтотерий (например, емболотерия) и массивных плотоядных животных (например, эндрюсарх, который достигал в длину 5,5 метров). В теплых морях плавали примитивные киты (например, базилозавр и дорудон), а на побережье Африки жили меритерий и странный арсинойтерий.

Около 36 млн лет назад начала замерзать расположена у южного полюса Антарктика; ее поверхность медленно покрывалась огромными ледовыми щитами. Климат на планете стал более холодным, а уровень воды в океанах упал. В разных частях света сильно изменился сезонных ритм дождей. Многочисленные животные не смогли приспособиться к этим изменениям, и всего через несколько миллионов лет примерно пятая часть всех видов живых существ, которые жили на Земле, вымерла.

олигоценового эпоха

Охватывает промежуток времени 34-24 млн лет назад. В начале олигоцена климат на планете был сухим и прохладным, что способствовало образованию открытых равнин, полупустынь и кустарниковых зарослей. В результате изменения климата в конце эоцена много древних семейств млекопитающих вымерли. Их место заняли новые виды животных, включая и прямых предков некоторых современных млекопитающих — носорогов, лошадей, свиней, верблюдов и кроликов.

Среди млекопитающих продолжают появляться гигантские вегетарианцы (индрикотерии, например, не уступали по размерам динозаврам — они могли достигать 8 метров в высоту и весить до 15 тонн) и хищники (например, энтелодонты и гиенодоны).

В результате различия континентов Южная Америка и Австралия полностью отделились от остального мира. Со временем на этих «островных» континентах сформировалась уникальная фауна, представленная сумчатыми млекопитающими и другими животными.

Около 25 млн лет назад в Азии образуются первые обширные равнины, поросшие злаками — степи. С тех пор злаки, которые когда-то были несущественным элементом наземных ландшафтов, во многих частях мира постепенно превращаются в господствующий тип растительности, покров наконец пятую часть поверхности суши.

неогеновый период

Неогеновый период начался около 25000000 лет назад, закончился лишь 2 миллиона лет назад. Продолжительность неогена — 23 миллионов лет. Млекопитающие осваивают моря и воздуха — возникают киты и рукокрылые. Плацентарные вытесняют на периферию остальное млекопитающих. Фауна этого периода становится все более похожей на современную. Но есть и отличия — все еще существуют мастодонт, гипарионы, саблезубый тигр. Большие нелетучие птицы играют большую роль, особенно в изолированных, островных экосистемах.

миоценовыми эпоха

Охватывает временной промежуток 24-5 млн лет назад. Чередование засушливых и дождливых сезонов привело к тому, что в миоцене значительная часть суши покрыта бескрайними степями. Поскольку злаки и другие травы перевариваются плохо, у травоядных млекопитающих сформировались новые типы зубов и изменился пищеварительный аппарат, что позволило им извлекать из этого легкодоступного корма максимум питательных веществ.

Степи стали родиной быков, оленей и лошадей. Многие из этих животных держались стадами и кочевали с места на место вслед за дождями. А за стадами травоядных шли следом и хищники.

Другие млекопитающие предпочитали ощипывания листьев деревьев и кустарников. Некоторые из них (например, Дейнотерий и Халикотерий) достигали очень больших размеров.

В миоцене образовались многочисленные горные системы — Альпы, Гималаи, Анды и Скалистые горы. Некоторые из них стали настолько высокими, что изменили характер циркуляции воздуха в атмосфере и начали играть важную роль в формировании климата.

плиоценовыми эпоха

Охватывает промежуток времени 5-2,6 млн лет назад. В плиоцене климат Земли стал еще разнообразнее. Планета разделилась на большое количество климатических регионов — от территорий, покрытых полярной льдом в жарких тропиков.

В поросших злаками степях каждого континента появлялись все новые виды травоядных животных и хищников, которые охотились на них. В восточной и южной частях Африки густые леса уступили открытым саваннам, что заставило первых гоминид (например, афарского австралопитека) спуститься с деревьев и добывать корм на земле.

Около 2500000 лет назад американский континент, примерно в течение 30 млн лет находился в изоляции от остального мира, столкнулся с Северной Америкой. С севера на территорию современной Аргентины проникли смилодон и другие хищники, а гигантские дедикуры, фороракосы и другие представители южноамериканской фауны перебрались в Северную Америку. Это переселение животных получило название «Большой обмен».

Антропогеновое (четвертичный) период

Это кратчайший геологический период, но именно в четвертичном периоде сформировалось большинство современных форм рельефа и произошло много существенных событий в истории Земли (с точки зрения человека), самые важные из которых — ледниковая эпоха и появление человека. Продолжительность четвертичного периода настолько мала, что привычные палеонтологические методы относительного и изотопного определения возраста оказались недостаточно точными и чувствительными. На таком коротком интервале времени используется, прежде всего, радиоуглеродный анализ и другие методы, большинство из которых базируется на распаде короткоживущих изотопов. Специфика четвертичного периода по сравнению с другими геологическими периодами вызвала появление особой ветви геологии — четвертичную.

Четвертичный период делится на плейстоцен и голоцен.

плейстоценовыми эпоха

Охватывает промежуток времени 2600000 — 11,7 тыс. Лет назад. В начале плейстоцена на Земле наступил длительный ледниковый период. В течение двух миллионов лет на планете многократно чередовались очень холодные и относительно теплые отрезки времени. В холодные промежутки, которые продолжались примерно 40000 лет, континенты покрывались ледниками. В промежутках теплее климатом (межледниковых) лед отступала, и уровень они в морях поднимался.

У многих животных холодных регионов планеты (например, у мамонта и шерстистого носорога) появился густой шерстистый покров и толстый слой подкожного жира. На равнинах паслись стада оленей и лошадей, на которых охотились пещерные львы и другие хищники. А около 180 000 лет назад на них начали охотиться и люди — сначала неандерталец, а затем и человек разумный.

Однако многие крупные животных не смогли приспособиться к резким колебаниям климата и вымерли. Около 10 000 лет назад ледниковый период закончился, и климат на Земле стал более теплым и влажным. Это способствовало быстрому увеличению численности человеческой популяции и расселению людей по всему земному шару. Они научились обрабатывать землю и выращивать культурные растения. Сначала маленькие сельскохозяйственные общины разрослись, появились города, а всего через несколько тысячелетий человечество превратилось в мировое сообщество, что использует все достижения высоких технологий. Однако многие виды животных, с которыми люди испокон веков делили планету, оказались на грани исчезновения. Ученые все чаще говорят о том, что по вине человека на Земле развернулось новое массовое вымирание видов.

голоценовом эпоха

Охватывает промежуток времени от 11,7 тыс. Лет назад и до наших дней. Жизнь животных и растений незначительно менялось в течение голоцена, но есть большие перемещения в их распределениях. Многие крупных животных, включая мамонтов и мастодонтов, саблезубых кошек (таких как смилодон и гомотерия) и гигантских ленивцев начали вымирать с позднего плейстоцена по ранней голоцен. В Северной Америке многочисленные животные, которые процветали в других краях (включая лошадей и верблюдов), вымирали. Некоторые объясняют сокращение американской мегафауны прибытия предков американских индейцев, но все же большинство ученых утверждают, что большее влияние оказало изменение климата.

Среди археологических культур того времени можно назвать гамбургскую культуру, культуру федермесер и натуфийской культуру. Возникают древнейшие города мира, например, Иерихон на Ближнем Востоке.

Возникновение жизни на Земле


Проблема происхождения жизни приобрела сейчас неодолимое очарование для всего человечества. Она не только привлекает к себе пристальное внимание ученых разных стран и специальностей, но интересует вообще всех людей мира. Сейчас считается общепризнанным, что возникновение жизни на Земле представляло собой закономерный процесс, вполне поддающийся научному исследованию. В основе этого процесса лежала эволюция соединений углерода которая происходила во Вселенной задолго до возникновения нашей Солнечной системы и лишь продолжалась во время образования планеты Земля – при формировании ее коры, гидросферы и атмосферы.

С момента возникновения жизни природа находится в непрерывном развитии. Процесс эволюции длится уже сотни миллионов лет, и его результатом является то разнообразие форм живого, которое во многом до конца еще не описано и не классифицировано.

Вопрос о происхождении жизни труден в исследовании, потому, что, когда наука подходит к проблемам развития как создания качественно нового, она оказывается у предела своих возможностей как отрасли культур ы, основанной на доказательстве и экспериментальной проверке утверждений.

Ученые сегодня не в состоянии воспроизвести процесс возникновения жизни с такой же точностью, как это было несколько миллиардов лет назад. Даже наиболее тщательно поставленный опыт будет лишь модельным экспериментом, лишенным ряда факторов, сопровождавших появление живого на Земле. Трудность - в невозможности проведения прямого эксперимента по возникновению жизни (уникальность этого процесса препятствует использование основного научного метода).

Вопрос о происхождении жизни интересен не только сам по себе, но и тесной связью с проблемой отличия живого от неживого, а также связью с проблемой эволюции жизни.

Глава 1. Что такое жизнь? Отличие живого от неживого.

Для понимания закономерностей эволюции органического мира на Земле необходимо иметь общее представления об эволюции и основных свойствах живого. Для этого необходимо охарактеризовать живые существа с точки зрения их некоторых особенностей и выделить основные уровни организации жизни.

Когда-то считалось, что живое можно отличить от неживого по таким свойствам, как обмен веществ, подвижность, раздражимость, рост, размножение, приспособляемость. Но анализ показал, что порознь все эти свойства встречаются и среди неживой природы, и поэтому не могут рассматриваться как специфические свойства живого. В одной из последних и наиболее удачных попыток живое характеризуется следующими особенностями, сформулированными Б. М. Медниковым в виде аксиом теор етической биологии:

Все живые организмы оказываются единством фенотип а и программы для его построения (генотипа), передающейся по наследству из поколения в поколение (аксиом а А. Вейсмана).

Генетическая программа образуется матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предшествующего поколения (аксиом а Н. К. Кольцова).

В процессе передачи из поколения в поколение генетические программы в результате различных причин изменяются случайно и не направленно, и лишь случайно такие изменения могут оказаться удачными в данной среде (1-ая аксиом а Ч. Дарвина) .

Случайные изменения генетических программ при становлении фенотип а многократно усиливаются (аксиом а Н. В. Тимофеева-Ресовского).

Многократно усиленные изменения генетических программ подвергаются отбору условиями внешней среды (2-ая аксиом а Ч. Дарвина).

«Дискретность и целостность – два фундаментальных свойства организации жизни на Земле. Живые объекты в природе относительно обособлены друг от друга (особи, популяции, виды). Любая особь многоклеточного животного состоит из клеток, а любая клетка и одноклеточные существа – из определенных органелл. Органеллы состоят из дискретных высокомолекулярных органических веществ, которые в свою очередь состоят из дискретных атомов и элементарных частиц. В то же время сложная организация немыслима без взаимодействия ее частей и структур – без целостности».

Целостность биологических систем качественно отличается от целостности неживого, и прежде всего тем, что целостность живого поддерживается в процессе развития. Живые системы – открытые системы, они постоянно обмениваются веществами и энерги ей со средой. Для них характерна отрицательная энтропия (увеличение упорядоченности), увеличивающаяся, видимо, в процессе органической эволюции. Вероятно, что в живом проявляется способность к самоорганизации материи.

«Среди живых систем нет двух одинаковых особей, популяция и видов. Эта уникальность проявления дискретности и целостности живого основана на замечательном явлении ковариантной редупликации.

Ковариантная редупликация (самовоспроизведение с изменениями), осуществляемая на основе матричного принципа (сумма трех первых аксиом ), - это, видимо, единственное специфическое для жизни (в известной нам форме ее существования на Земле) свойство. В основе его лежит уникальная способность к самовоспроизведению основных управляющих систем (ДНК, хромосом и генов)».

«Жизнь – одна из форм существования материи, закономерно возникающая при определенных условиях в процессе ее развития».

Итак, что такое живое и чем оно отличается от неживого. Наиболее точное определение жизни дал около 100 лет назад Ф. Энгельс: «Жизнь есть способ существования белковых тел, и этот способ существования состоит по своему существу в постоянном самообновлении химических составных частей этих тел». Термин «белок» тогда ещё не был определён вполне точно и его относили обычно к протоплазме в целом. Сознавая неполноту своего определения, Энгельс писал: «Наша дефиниция жизни, разумеется, весьма недостаточна, поскольку она далека от того, чтобы охватить все явления жизни, а, напротив, ограничивается самыми общими и самыми простыми среди них… Чтобы получить действительно исчерпывающее представление о жизни, нам пришлось бы проследить все формы её проявления, от самой низшей до наивысшей».

Кроме того, есть несколько фундаментальных отличий живого от неживого в вещественном, структурном и функциональном планах. В вещественном плане в состав живого обязательно входят высокоупорядоченные макромолекулярные органические соединения, называемые биополимерами, - белки и нуклеиновые кислоты (ДНК и РНК). В структурном плане живое отличается от неживого клеточным строением. В функциональном плане для живых тел характерно воспроизводство самих себя. Устойчивость и воспроизведение есть и в неживых системах. Но в живых телах имеет место процесс самовоспроизведения. Не что-то воспроизводит их, а они сами. Это принципиально новый момент.

Также живые тела отличаются от неживых наличием обмена веществ, способностью к росту и развитию, активной регуляцией своего состава и функций, способностью к движению, раздражимостью, приспособленностью к среде и т. д. Неотъемлемым свойством живого является деятельность, активность. «Все живые существа должны или действовать, или погибнуть. Мышь должна находиться в постоянном движении, птица летать, рыба плавать и даже растение должно расти».

Жизнь возможна лишь при определённых физических и химических условиях (температура, присутствие воды, ряда солей и т. д.). Однако прекращение жизненных процессов, например при высушивании семян или глубоком замораживании мелких организмов, не ведёт к потере жизнеспособности. Если сохраняется неповрежденной структура, она при возвращении к нормальным условиям обеспечивает восстановление жизненных процессов.

Однако строго научное разграничение живого и неживого встречает определенные трудности. Так, например, вирусы вне клеток другого организма не обладают ни одним из атрибутов живого. У них есть наследственный аппарат, но отсутствуют основные необходимые для обмена веществ ферменты, и поэтому они могут расти и размножаться, лишь проникая в клетки организма-хозяина и используя его ферментные системы. В зависимости от того, какой признак мы считаем важным, мы относим вирусы к живым системам или нет.

Итак, суммируя все выше сказанное, дадим определение жизни:

«Жизнь – процесс существования биологических систем (например, клетка, организм растения, животного), основу которых составляет сложные органические вещества и способные самовоспроизводиться, поддерживать свое существование в результате обмена энерги ей, веществом и информацией со средой.»

Глава 2. Концепции происхождения жизни.

а) Идея самопроизвольн ого происхождения.

Вначале в науке вообще не существовало проблемы возникновения жизни, потому что учеными античного мира допускалась возможность постоянного зарождения живого из неживого. Великий Аристотель (4-ый в. до Р. Х.) не сомневался в самозарождении лягушек. Философ Плотин в 3-ем веке до новой эры утверждал, что живые существа самозарождаются в земле в процессе гниения. Эта идея самопроизвольн ого зарождения организмов, видимо, представлялась многим поколениям наших далеких предков очень убедительной, так как просуществовала, не меняясь, долгие века, вплоть до 17-го века.

б) Идея происхождения жизни по принципу «живое – от живого».

В 17-ом веке опыты тосканского врача Франческо Реди показали, что без мух черви в гниющем мясе не обнаружатся, а если прокипятить органические растворы, то микроорганизмы в них вообще зарождаться не смогут. И только в 60-х гг. 19-го века французский ученый Луи Пастер в своих опытах продемонстрировал, что микроорганизмы появляются в органических растворах только потому, что туда раньше был занесен зародыш.

Таким образом, опыты Пастера имели двоякое значение –

Доказали несостоятельность концепции самопроизвольн ого зарождения жизни.

Обосновали идею о том, что все современное живое происходит только от живого.

в) Идея космического происхождения жизни.

Примерно в тот же период, когда Пастер продемонстрировал свои опыты, немецкий ученый Г. Рихтер разработал теор ию занесения живых существ на Землю из космоса. Он утверждал, что зародыши могли попасть на Землю вместе с космической пылью и метеор итами и положить начало эволюции живого, которая породила все многообразие земной жизни. Эта концепция называлась концепцией панспермии. Ее разделяли такие ученые, как Г. Гельмгольц, У. Томпсон, что способствовало ее широкому распространению в научных кругах. Но она не получила научного доказательства, так как примитивные организмы или зародыши должны были бы погибнуть под действием ультрафиолетовых лучей и космического излучения.

г) Гипотез а А. И. Опарина.

В 1924 году вышла в свет книга «Происхождение жизни» советского ученого А. И. Опарина, где он экспериментально доказал, что органические вещества могут образовываться абиогенным путем при действии электрических зарядов, тепловой энерги и, ультрафиолетовых лучей на газовые смеси, содержащие пары воды, аммиака, метана и др. Под влиянием различных факторов природы эволюция углеводородов привела к образованию аминокислот, нуклеидов и их полимеров, которые по мере увеличения концентрации органических веществ в первичном бульоне гидросферы способствовали образованию коллоидных систем, так называемых коацерватов, которые, выделяясь из окружающей среды и имея неодинаковую внутреннюю структуру, по-разному реагировали на внешнюю среду. Превращению углеродистых соединений в химический период эволюции способствовала атмосфера с ее восстановительными свойствами, которая потом стала приобретать окислительные свойства, что свойственно атмосфере и в настоящее время.

Гипотез а Опарина способствовала конкретному изучению происхождения простейших форм жизни. Она положила начало физико-химическому моделированию процессов образования молекул аминокислот, нуклеиновых оснований, углеводородов в условиях предполагаемой первичной атмосферы Земли.

д) Современные концепции происхождения жизни.

Сегодня проблема происхождения жизни исследуется широким фронтом различных наук. В зависимости от того, какое наиболее фундаментальное свойство живого исследуется и преобладает в данном изучении (вещество, информация, энерги я), все современные концепции происхождения жизни можно разделить условно на:

Концепцию субстратного происхождения жизни (ее придерживаются биохимики во главе с А. И. Опариным).

Концепцию энергетического происхождения. Она разрабатывается ведущими учеными-синергетиками И. Пригожиным, М. Эйгеном .

Концепцию информационного происхождения. Ее развивали А. Н. Колмогоров, А. А. Ляпунов, Д. С. Чернавский.

Концепция генного происхождения.

Автором этой концепции является американский генетик Г. Меллер. Он допускает, что живая молекула, способная размножаться, могла возникнуть вдруг, случайно в результате взаимодействия простейших веществ. Он считает, что элементарная единица наследственности – ген – является и основой жизни. И жизнь в форме гена, по его мнению, возникла путем случайного сочетания атомных группировок и молекул, существовавших в водах первичного океана. Но математические расчеты этой концепции показывают полную невероятность такого события.

Ф. Энгельс одним из первых высказал мысль о том, что жизнь возникла не внезапно, а сформировалась в ходе длительного пути эволюционного развития материи. Эволюционная идея положена в основу гипотез ы сложного, многоступенчатого пути развития материи, предшествовавшего зарождению жизни на Земле.

Современные биологи доказывают, что универсальной формулы жизни (т. е. такой, которая бы полностью отображала бы ее сущность) нет и быть не может. Такое понимание предполагает исторический подход к биологическому познанию как постижению сущности жизни, в ходе чего менялись и сами концепции происхождения жизни и представления о тех формах, в которых такое познание возможно.

Биоэнергоинформационный обмен как основа возникновения жизни.

Одной из новейших концепций происхождения жизни на Земле является концепция о биоэнергоинформационном обмене. Понятие биоэнергоинформационного обмен возникло в сфере биофизики, биоэнергетики и экологии в связи с последними достижениями в этих областях науки. Термин биоэнергоинформатика был введен доктором технических наук, профессором МГТУ им. Н. Э. Баумана В. Н. Волченко в 1989 году, когда им его единомышленниками была проведена первая Всесоюзная конференция по биоэнергоинформатике в Москве.

Изучение биоэнергоинформационного обмена дало основание высказать предположение об информационном единстве Вселенной, о наличии в ней такой субстанции, как «Информация – Сознание», а не только известных форм материи и энерги и.

Одним из элементов этой концепции выступает наличие во Вселенной общего замысла, плана. Эта гипотез а подтверждается современной астрофизикой, согласно которой фундаментальные свойства Вселенной, значения основных физических констант и даже формы физических закономерностей тесно связаны со структурой Вселенной во всех ее масштабах и с возможностью Жизни.

Отсюда следует второй элемент концепции биоэнергоинформатики – Вселенную нужно рассматривать как живую систему. А в живых системах фактор Сознания (информации) наряду с материей и энерги ей, должен занимать весьма существенное место. Таким образом, можно говорить о необходимости триединства Вселенной: материи, энерги и и информации.

Глава 3. Как появилась жизнь на Земле.

Современная концепция возникновения жизни на Земле является результатом широкого синтеза естественных наук, многих теор ий и гипотез , выдвинутых исследователями разных специальностей.

Для возникновения жизни на Земле важна первичная атмосфера (планеты). Первичная атмосфера Земли содержала метан, аммиак, водяной пар и водород. Именно воздействуя на смесь этих газов электрическими зарядами и ультрафиолетовым излучением, ученым удалось получить сложные органические вещества, входящие в состав живых белков. Элементарными «кирпичиками» живого являются такие химические элементы как углерод, кислород, азот и водород. В живой клетке по весу содержится 70 процентов кислорода, 17 процентов углерода, 10 процентов водорода, 3 процента азота, затем идут фосфор, калий, хлор, сера, кальций, натрий, магний, железо. Итак, первый шаг на пути к возникновению жизни заключается в образовании органических веществ из неорганических. Он связан с наличием химического «сырья», синтез которого может произойти при определенном излучении, давлении, температуре, влажности. Возникновению простейших живых организмов предшествовала длительная химическая эволюция. Из сравнительно небольшого числа соединений (в результате естественного отбора) возникли вещества со свойствами, пригодными для жизни. Соединения, возникшие на основе углерода, образовали «первичный бульон» гидросферы. По мнению ученых, содержащие азот и углерод вещества возникли в расплавленных глубинах Земли и выносились на поверхность при вулканической деятельности. Второй шаг в возникновении соединений связан с возникновением в первичном океане Земли упорядоченных сложных веществ – биополимеров: нуклеиновых кислот, белков. Как осуществлялось формирование биополимеров?

Если предположить, что в этот период все органические соединения находились в первичном океане Земли, то более сложных органические соединения могли образоваться на поверхности океана в виде тонкой пленки и на прогреваемом солнцем мелководье. Бескислородная среда облегчала синтез полимеров из неорганических соединений. Кислород как сильнейший окислитель разрушал бы возникающие молекулы. Сравнительно несложные органические соединения начали объединяться в крупные биологические молекулы. Образовались ферменты – белковые вещества-катализаторы, которые способствуют возникновению или распаду молекул. В результате активности ферментов возникли важнейшие «первоэлементы жизни» - нуклеиновые кислоты, сложные полимерные вещества (состоящие из мономеров). Мономеры в нуклеиновых клетках расположены таким образом, что несут определенную информацию, код, заключающийся в том, что каждой аминокислоте, входящей в белок, соответствует определенный набор из трех нуклеотидов, так называемый триплет нуклеиновой кислоты. На основе нуклеиновых кислот уже могут строиться белки и происходить обмен с внешней средой веществом и энерги ей. Симбиоз нуклеиновых кислот образовал «молекулярно-генетические системы управления» .

Эта стадия, по-видимому, была отправной, переломной в возникновении жизни на Земле. Молекулы нуклеиновых кислот приобрели свойства самовоспроизведения себе подобных, стали управлять процессом образования белковых веществ. У истоков всего живого стояли ревертаза и матричный синтез с ДНК на РНК, эволюция РНК-овой молекулярной системы в ДНК-овую. Так возник «геном биосферы».

Жара и холод, молнии, ультрафиолетовая реакция, атмосферные электрические заряды, порывы ветра и водяные струи – все это обеспечивало начало или затухание биохимических реакций, характер их протекания, генные «всплески». К концу биохимической стадии появились такие структурные образования, как мембраны, отграничивающие смесь органических веществ от внешней среды.

Мембраны сыграли главную роль в построении всех живых клеток. Тела всех растений и животных состоят из основных единиц жизни – клеток. Живое содержание клетки – протоплазма. Современные ученые пришли к выводу, что первые организмы на Земле были одноклеточными прокариотами – организмами, лишенными ядра («карио» - в переводе с греческого «ядро»). По своему строению они напоминают ныне бактерии или сине-зеленые водоросли.

Для существования первых «живых» молекул, прокариотов необходим, как для всего живого, приток энерги и извне. Каждая клетка – маленькая «энергетическая станция». Непосредственным источником энерги и для клеток служит аденозинтрифосфорная кислота и другие соединения, содержащие фосфор. Энерги ю клетки получают с пищей, они способны не только тратить, но и запасать энерги ю.

Предметом дискуссии является вопрос о том, возник ли на Земле сначала какой-то один вид организма или появилось их великое множество. Предполагают, что возникло множество первых комочков живой протоплазмы.

Приблизительно 2 млрд. лет тому назад в живых клетках появилось ядро. Из прокариотов возникли эукариоты – одноклеточные организмы с ядром. Их на Земле насчитывается 25-30 видов. Самые простые из них – амебы. У эукариотов существует в клетке оформленное ядро с веществом, содержащим код синтеза белка. Приблизительно к этому времени наметился «выбор» растительного или животного образа жизни. Основное различие этих образов жизни связано со способом питания, с возникновением такого важного для жизни на Земле процесса, как фотосинтез. Фотосинтез заключается в создании органических веществ, например, сахаров, из углекислоты и воды при использовании энерги и света. Благодаря фотосинтезу растения вырабатывают органические вещества, за счет которого происходит наращивание массы растений.

Заключение.

За последние десять лет понимание происхождения жизни сделало огромные успехи. Остается надеяться, что следующее десятилетие принесет еще больше: новые исследования очень активно ведутся во многих областях.

Но, именно, теор ия эволюции дает возможность понять оптимальную стратегию взаимоотношения человека и окружающей живой природы, позволяет ставить вопрос о разработке принципов управляемой эволюции. Отдельные элементы такой управляемой эволюции уже сегодня просматриваются, например, в попытках не простого промыслового использования, а хозяйственного управления эволюцией отдельных видов животных и растений.

Изучение процессов эволюции важно для охраны окружающей среды. Человек, вторгаясь в природу, еще не научился предвидеть и предупреждать нежелательные последствия своего вмешательства. Человек использует для борьбы с вредителями гексахлоран, ртутные препараты и многие другие ядовитые вещества. Это немедленно ведет к эволюционному «ответу» природы – возникновению устойчивых к пестицидам рас насекомых, «суперкрыс», устойчивых к антикоагулянтам и т. п.

Часто таким же катастрофическим становится промышленное загрязнение. Миллионы тонн стиральных порошков, попадая в сточные воды, убивают высшие организмы и вызывают невиданное прежде развитие цианей и некоторых микроорганизмов. Эволюция в этих случаях приобретает уродливые формы, и не исключено, что в будущем человечество столкнется с неожиданной «эволюционной угрозой» со стороны каких-нибудь суперустойчивых к промышленным загрязнениям микроорганизмов, бактерии и цианей, которые смогут изменить облик нашей планеты в нежелательном направлении.

Список литературы

1. Агапова О. В., Агапов В. И. Лекции по концепциям современного естествознания. Вузовский курс. – Рязань, 2000.

2. Вернадский В. И. Начало и вечность жизни. – М.: Республика, 1989.

3. Горелов А. А. Концепции современного естествознания. – М.: Мысль, 2000.

4. Дубнищева Г. Д. Концепции современного естествознания: Учеб. для студ. вузов / Под ред. М. Ф. Жукова. – Новосибирск: ЮКЭА, 1999.

5. Концепции современного естествознания. Серия «Учебники и учебные пособия». – Ростов н/Д, 2000.

6. Николов Т. «Долгий путь жизни», М., Мир, 1999 г. Селье Г. От мечты к открытию. – М., 2001.

7. Поннамперума С. «Происхождение жизни», М., Мир, 1999 г.

8. Советский энциклопедический словарь. - М.: Сов. энциклопедия, 2002.

9. Яблоков А. В., Юсуфов А. Г. Эволюционное учение (Дарвинизм): Учеб. для биол. спец. вузов. – 3-е изд. – М.: Высш. шк.,

Представление о жизни на Земле неоднозначно. Существует несколько гипотез о происхождении жизни на Земле.

Креационизм – земная жизнь была создана Творцом. Представления о Божественном сотворении мира придерживаются последователи почти всех наиболее распространенных религиозных учений. Ни доказать, ни опровергнуть креационистическую концепцию в настоящее время невозможно.

Гипотеза вечности жизни – жизнь, как и сама Вселенная, существовала всегда, и будет существовать вечно, не имея начала и конца. Вместе с тем отдельные тела и образования – галактики, звезды, планеты, организмы – возникают и погибают, т.е. существование во времени ограничено. Жизнь могла распространяться от одной галактики к другой и эта идея «заноса» на Землю жизни из Космоса называется панспермией . Идеи «вечности и безначальности» жизни придерживались многие ученые, среди них С.П. Костычев, В.И. Вернадский.

Гипотеза самопроизвольного зарождения жизни из неживой материи. Идеи о самозарождении жизни высказывались еще со времен античности. На протяжении тысячелетий они верили в возможность постоянного самопроизвольного зарождения жизни , считая его обычным способом появления живых существ из неживой материи. По мнению многих ученых средневековья, рыбы могли зарождаться из ила, черви – из почвы, мыши – из тряпок, мухи – из гнилого мяса.

В XVII в. итальянский ученый Ф. Реди экспериментально показал невозможность постоянного самозарождения живого. В нескольких стеклянных сосудах он поместил кусочки мяса. Часть из них он оставил открытыми, а часть прикрыл кисеей. Личинки мух появились только в открытых сосудах, в закрытых их не было. Принцип Реди: «живое – от живого». Окончательно версия о постоянном самозарождении живых организмов была опровергнута в середине XIX в. Л. Пастером. Опыты убедительно показывали, что в современную эпоху живые организмы любого размера происходят от других живых организмов.

Гипотеза биохимической эволюции. По представлениям, высказанным в 20-х гг. ХХ в. А.И.Опариным, а затем Дж. Холдейном, жизнь, а точнее, живое, возникло из неживой материи на Земле в результате биохимической эволюции .

Условия возникновения жизни при биохимической эволюции

В настоящее время учеными предложены более или менее вероятные объяснения, каким образом в первичных условиях Земли из неживой материи постепенно, шаг за шагом, развились разнообразные формы жизни. Возникновению жизни путем химической эволюции способствовали следующие условия:

— первоначальное отсутствие жизни;

— наличие в атмосфере соединений, обладающих восстановительными свойствами (при почти полном отсутствии кислорода О 2);

— наличие воды и биогенных веществ;

— наличие источника энергии (относительно высокая температура, мощные электрические разряды, высокий уровень УФ-излучения).

Механизм возникновения жизни

Возраст Земли составляет около 4,6–4,7 млрд. лет. Жизнь имеет свою историю, начавшуюся, по палеонтологическим данным, 3–3,5 млрд. лет назад.

В 1924 г. русский академик А.И. Опарин выдвинул гипотезу о механизме зарождения жизни. В 1953 г. американские ученые С. Миллер и Г. Юри экспериментально подтвердили гипотезу образование органических веществ (мономеров) из газов, присутствующих в первичной атмосфере Земли.

В настоящее время имеется уже достаточно много неоспоримых доказательств того, что первичная атмосфера Земли была бескислородной и, вероятно, состояла главным образом из водяных паров H 2 O, водорода H 2 и углекислого газа CO 2 с небольшой примесью других газов (NH 3 , CH 4 , CO, H 2 S). Возникшая на Земле жизнь постепенно изменила эти условия и преобразовала химию верхних оболочек планеты.

Происхождение жизни на Земле — подробности для пытливых умов

Согласно биохимической теории А.И. Опарина в отсутствие кислорода и живых организмов, абиогено синтезировались простейшие органические соединения – мономеров , предшественники биологических макромолекул живого вещества и ряда других органических соединений.

Возможными источниками энергии для образования органических веществ без участия живых организмов, видимо, являлись электрические разряды, ультрафиолетовое излучение, радиоактивные частицы, космические лучи, ударные волны от метеоритов, попадавших в земную атмосферу, теплота от интенсивной вулканической деятельности. В отсутствие кислорода, который мог бы их разрушить, а также живых организмов, которые использовали бы их в качестве пищи, абиогенно образовавшиеся органические вещества накапливались в Мировом океане – «первичном бульоне ».

Следующим шагом было образование более крупных полимеров из малых органических мономеров, опять же без участия живых организмов. Американский ученый С. Фокс в результате нагревания смеси сухих аминокислот получил полипептиды различной длины. Они были названы протеиноидами, т.е. белковообразными веществами. Видимо, на первобытной Земле образование таких протеиноидов и полинуклеотидов со случайной последовательностью аминокислот или нуклеотидов могло происходить при испарении воды в водоемах, остававшихся после отлива.

Если полимер образовался, он способен влиять на образование других полимеров. Некоторые протеиноиды способны, подобно ферментам, катализировать определенные химические реакции: именно эта способность, наверное, была главной чертой, определившей их последующую эволюцию. Эксперименты показывают, что один полинуклеотид, возникший из смеси нуклеотидов может служить матрицей для синтеза другого.

Полипептиды благодаря их амфотерности формировали коллоидные гидрофильные комплексы (т.е. молекулы воды, образуя вокруг белковых молекул оболочку, обособляли их от всей массы воды). При этом отдельные комплексы ассоциировались друг с другом, что приводило к образованию обособленных от первичной среды капель коацерватов , способных поглощать и избирательно накапливать различные соединения . Естественный отбор способствовал выживанию наиболее устойчивых коацерватных систем, способных к дальнейшему усложнению.

Дальнейшая самоорганизация сложных молекул, происходившая за счет концентрирования на границе между коацерватами и внешней средой молекул липидов, привела к образованию перегородок мембранного типа. Во внутренних полостях коацерватов, куда уже только выборочно проникать молекулы, началась эволюцию от химических реакций к биохимическим. Одной из важнейших ступеней этой теории явилось объединение способности полинуклеотидов с каталитической активностью белков-ферментов.

Точка зрения Опарина и его сторонников по существу сформировала гипотезу голобиоза : структурную основу доклеточного предка (биоида) составляют жизнеподобные открытые (коацерватные) микросистемы, типа клеточной, способные к элементарному обмену веществ при участии ферментного механизма . Первичной белковая субстанция.

Гипотеза генобиоза : первичной была макромолекулярная система, подобная гену, способная к саморепродукции . Первичной признана молекула РНК.

Начальные этапы развития жизни на Земле

Современное представление о жизни на Земле сводится к тому, что первые примитивные клетки появились в водной среде Земли 3,8 млрд. лет назад – анаэробные, гетеротрофные прокариоты , они питались синтезированными абиогенно органическими веществами или менее удачливыми своими собратьями; энергетические потребности удовлетворяли за счет брожения.

При увеличении численности гетеротрофных прокариотических клеток запас органических соединений в первичном океане истощался. В этих условиях значительное преимущество при отборе должны были приобрести организмы, способные к автотрофности , т.е. к синтезу органических орг. веществ из неорганических. Видимо, первыми автотрофными организмами были хемосинтезирующие бактерии . Следующим этапом было развитие реакций с использованием солнечного света – фотосинтез .

Для первых фотосинтезирующих бактерий источником электронов был сероводород. Значительно позже у цианобактерий (синезеленых водорослей) развился более сложный процесс получения электронов из воды. В качестве побочного продукта фотосинтеза в земной атмосфере начал накапливаться кислород. Это явилось предпосылкой для возникновения в ходе эволюции аэробного дыхания . Способность синтезировать при дыхании большее количество АТФ позволяла организмам расти и размножаться быстрее, а также усложнять свои структуры и обмен веществ.

Считают, что предками эукариот были прокариотические клетки. Согласно теории клеточного симбиогенеза эукариотическая клетка представляет сложную структуру, состоящую из нескольких прокариотических клеток, которые взаимодополняют друг друга. Целый ряд данных свидетельствует о происхождении митохондрий и хлоропластов, а возможно, и жгутиков от ранних прокариотических клеток, ставших внутренними симбионтами большей по размерам анаэробной клетки.

Глубокие преобразования в строении и функционировании значительно увеличили эволюционные возможности эукариот, которые, появившись всего 0,9 млрд. лет назад, смогли достигнуть многоклеточного уровня и сформировать современную флору и фауну. Для сравнения следует сказать, что с момента появления первых прокариотических клеток (3,8 млрд. лет назад) до появления первых эукариотических клеток потребовалось 2,5 млрд. лет.

Происхождение жизни на Земле: Основные этапы развития биосферы

Эон Эра Период Возраст (начало), млн. лет Органический мир
1 2 3 4 5
Криптозой Архей 4500±100 Образование Земли. Возникновение прокариот и примитивных эукариот.
Протерозой 2600±100 Распространены водоросли, бактерии, все типы беспозвоночных.
Фанерозой Палеозой Кембрий 570±10 Процветание водорослей и водных беспозвоночных.
Ордовик 495±20
Силур 418±15 Появление наземных растений (псилофитов) и беспозвоночных.
Девон 400±10 Богатая флора псилофитов, появляются мхи, папоротниковидные, грибы, кистеперые и двоякодышащие рыбы.
Карбон 360±10 Обилие древовидных папоротников, исчезновение псилофитов. Доминируют земноводные, моллюски, рыбы; появляются рептилии.
Пермь 290±10 Богатая флора травянистых и семенных папоротников, появление голосеменных; вымирание древовидных папоротниковидных. Господство морских беспозвоночных, акул; развитие рептилий; вымирают трилобиты.
Мезозой Триас 245±10 Преобладают древние голосемянные; вымирают семенные папоротники. Преобладают земноводные, рептилии; появляются костистые рыбы, млекопитающие.
Юра 204±5 Господствуют современные голосемянные; появляются первые покрытосемянные; вымирают древние голосемянные. Господствуют гигантские рептилии, костистые рыбы, насекомые.
Мел 130±5 Доминируют современные покрытосемянные; сокращаются папоротники и голосемянные. Преобладают костистые рыбы, первоптицы, мелкие млекопитающие; вымирают гигантские рептилии.
Кайнозой Палеоген 65±3 Широко распространены покрытосемянные, особенно травянистые. Доминируют млекопитающие, птицы, насекомые. Исчезают многие рептилии, головоногие моллюски.
Неоген 23±1
Антропоген (четвертич.) 1,8 Современный растительный и животный мир. Эволюция и господство человека.

Многообразие живых организмов – основа организации и

устойчивости биосферы

Современное биологическое разнообразие: на Земле от 5 до 30 млн. видов. Биологическое разнообразие – как результат взаимодействия двух процессов – видообразования и вымирания. Биологическое разнообразие – наиболее ценный «ресурс» планеты. Биологическое разнообразие включает два понятия: генетическое разнообразие или многообразие генетических свойств у особей одного вида и видовое разнообразие или число различных видов внутри сообщества или всей биосферы. Биоразнообразие обеспечивает новыми источниками питания, энергии, сырья, химических и лекарственных продуктов. Генетическое разнообразие позволяет видам совершенствоваться, приспосабливаться, использовать необходимые ресурсы, найти место в биогеохимическом круговороте Земли. Биоразнообразие – страховая политика природы против катастроф.

Структура биологического разнообразия. Единицы системы – демы и популяции. Генофонд популяции.

Эволюция биологического разнообразия. Сквозная эволюционная тенденция – увеличение разнообразия , прерываемое резкими спадами в результате массовых вымираний видов.

Воздействие человека на биологическое разнообразие. Прямой ущерб в результате человеческой деятельности. Косвенный ущерб от воздействий, нарушающих сбалансированные соотношения и процессы в экосистемах.

Сохранение биологического разнообразия. Инвентаризация и охрана биологического разнообразия. Сочетание прав человека с правами животных. Биоэтика. Сочетание этических принципов и экономических интересов. Сохранение и естественная эволюция биологического разнообразия.

Биологическое разнообразие как индикатор воздействий. Используются как отдельные компоненты биологического разнообразия, так и суммарные показатели. Нарушение структуры функции или сукцессионной последовательности развития экосистемы обычно выражается в сокращении биологического разнообразия.

В настоящее время на Земле описано около 3 млн. видов живых организмов. В современной систематике живых организмов существует следующая иерархия таксонов: царство, отдел (тип в систематике животных), класс, порядок (отряд в систематике животных), семейство, род, вид. Кроме того, выделяют промежуточные таксоны: над- и подцарства, над- и подотделы и т.д.

Живое на земле - откуда мы? В версиях недостатка нет - от сугубо научных до самых фантастических. Человечество ищет ответ на этот вопрос уже тысячелетия. Ответить на него попытался известный российский биофизик Всеволод Твердислов в ходе лекции, состоявшейся в образовательном центре «Сириус». Он объяснил, почему на Земле существует лишь один живой организм, что общего между слизевиком и железными дорогами в Токио и как нужно искать инопланетян. «Лента.ру» приводит основные тезисы его выступления.

Три вопроса

В науке для просвещенного человечества существует всего три вопроса: как появилась Вселенная, как в ней зародилась жизнь и как живое научилось думать. Чтобы разобраться в столь глобальных темах, мыслить нужно масштабно, не в рамках какой-либо одной конкретной науки.

Очень многие процессы можно объяснить с помощью такого понятия, как «самоорганизация активных сред». Активная среда энергетически и информационно совмещает разнородные процессы в пространстве и времени. Такие разные, казалось бы, явления, как распространение огня в степном пожаре, распространение слухов и инфекций, валют или языков объясняются одинаково, если рассматривать их с позиций биофизики.

Биофизика - раздел биологии, изучающий физические аспекты существования живой природы на всех ее уровнях, от молекул и клеток до биосферы в целом, а также наука о физических процессах, протекающих в биологических системах разного уровня организации и о влиянии на биологические объекты различных физических факторов. Биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов, и биологическими особенностями их жизнедеятельности.

Иными словами, механизмы самоорганизации в физико-химических, биологических, экологических и социальных системах можно рассматривать с общих позиций. Имея представление о самоорганизации активных сред, можно создать модели, которые описывают такие несхожие на первый взгляд процессы, как работа лазера, свертывание крови, химические реакции, биение сердца или появление годовых колец у дерева.

Еще Аристотель утверждал: «Правильно в философии рассматривать сходство даже в вещах, далеко отстоящих друг от друга». Современная наука исходит из того, что это утверждение верно не только для философии.

Местные мы

Сколько на Земле организмов? Один: биосфера. Это единственный самодостаточный организм, под ногами у него таблица Менделеева, сверху аш ню падает, то есть кванты света. Ну и условия Земли, конечно, надо принимать во внимание.

Активная среда самоорганизуется по одинаковым принципам, независимо от ее размера. В качестве примера можно рассмотреть то, как по коре дуба расползается слизевик. Простейший организм, клетка размером в полмиллиметра, кусочек слизи, который может настолько разрастись, что покроет метры дерева.

Ученые провели эксперимент, взяв за основу географическую карту Токио и окрестностей. Вокруг слизевика, который как бы находится на месте японской столицы, они разложили пищу в тех местах, где располагаются соседние с Токио города и поселки. Слизевик начал движение в сторону пищи, прокладывая к ней каналы - «тропы». Когда исследователи сравнили схему движения подопытного организма и реальную карту японских транспортных артерий, они совпали. Все активные среды самоорганизуются, подчиняясь одним и тем же законам.

Самоорганизация - основа всего живого на земле. При этом важно учитывать, что определяется эта самоорганизация прежде всего физическими законами - даже в биологии, хотя люди привыкли трактовать биологию через химические соединения. Если речь идет о наследственности, то вспоминают ДНК. Если говорят о биологических рабочих инструментах, то подразумевают белки и ферменты. Если слышат об оболочке клетки, то на ум приходят липидные мембраны.

В результате даже астрономы, когда ищут жизнь во Вселенной, ориентируются на углеродные соединения, напоминающие аминокислоты. Если встречается что-то, напоминающее нуклеиновые кислоты, то делается предположение о существовании там форм жизни. Но ведь совершенно не очевидно, что вне Земли будут такие же ДНК, как здесь.

Как происходит естественный отбор на Земле? Природа предпочитает одни кислоты и отвергает другие не потому, что они ей нравятся или не нравятся. И даже не сами аминокислоты отбираются - природа выбирает среди разных физических форм принципы эффективности: самая эффективная побеждает. А значит, и внеземные цивилизации надо искать не через ДНК, из которых состоим мы, люди, а через физические формы потребления энергии.

На этом основана концепция сферы Дайсона, разработанная американским астрофизиком Фрименом Дайсоном. Идею он, кстати, позаимствовал из книги «Создатель звезд» фантаста Олафа Стэплдона. Как он предлагал искать инопланетный разум? Необходимо создать в космосе тонкую сферическую оболочку большого радиуса, сопоставимого с радиусом планетных орбит, со звездой в центре. Предполагается, что развитая цивилизация инопланетян может использовать сферу для полной утилизации энергии звезды или для решения проблемы жизненного пространства. По энергетическим колебаниям инопланетяне и будут обнаружены.

Пока вне Земли не найдено ни одного даже самого примитивного соединения, какое не могло бы быть синтезировано на нашей планете. Все, что обнаружено в космосе, производится самой Землей сейчас. Иными словами, нет никаких доказательств, что жизнь на Землю была привнесена извне. Это опровергает гипотезу панспермии, которая предполагает, что зародыш жизни (например, споры микроорганизмов) был занесен на нашу планету из космоса, скажем, метеоритом.

Если на метеорите прилетит пять аминокислот, ведь из них еще нужно сделать клетку. Представьте, что у вас есть скрипка, барабан и фагот, но один лишь факт наличия этих музыкальных инструментов еще не означает, что у вас есть оркестр. В этом и состоит главная тайна зарождения жизни. Этот оркестр нам на Землю никто не привозил. Все соединения, которые обнаружены в космосе, получаются и на Земле - с помощью молний и естественных природных катализаторов.

Избегайте равновесия

Часто можно услышать выражение «этот организм находится в равновесии с окружающей средой». Физик данную фразу трактует однозначно: «этот организм мертв». Мы с вами принципиально неравновесные и удалены от термодинамического равновесия, и уж если говорить о наших отношениях с окружающей средой, то находимся мы в термодинамическом, энергетическом и материальном балансе. Это могут быть стационарные отношения или нестационарные, но никак не равновесные. Равновесие у нас может быть только на погосте.

Сама суть жизни - это взаимодействия разностей химических и электрических потенциалов, концентраций и так далее. Только в случае неравенства и неравновесия может идти химический процесс. С точки зрения биофизика, энергетическая жизнь - это парабола. В нижней точке жизнь замирает, в каком-то смысле ее там нет. Процессы самоорганизации активной среды начинаются тогда, когда заканчивается равновесие и система удаляется от него.

Если взять две системы с одинаковым электрическим потенциалом - неважно, сколь он велик, - то никакого движения зарядов быть не может. Нужна асимметрия. Это - главное условие начала процессов. Химическими процессами движет физика. На этом строятся современные системные биология и биофизика. И сейчас одно из самых перспективных направлений - это наука, которая с одной стороны включает в себя биофизику, а с другой - синергетику.

Синергетика, или теория сложных систем - междисциплинарное направление науки, изучающее общие закономерности явлений и процессов в сложных неравновесных системах (физических, химических, биологических, экологических, социальных и других) на основе присущих им принципов самоорганизации. Синергетика является междисциплинарным подходом, поскольку принципы, управляющие процессами самоорганизации, представляются одними и теми же безотносительно природы систем, и для их описания должен быть пригоден общий математический аппарат.

Знаменитый французский физик, лауреат Нобелевской премии Пьер Кюри сказал, что природой движет нарушение симметрии, само движение по сути есть искажение симметрии, ведь симметрия - это статика.

Надо учитывать, что природа часто не подчиняется тому, что физики по традиции называют «законом». Например, закон Гука - утверждение, согласно которому деформация, возникающая в упругом теле, прямо пропорциональна приложенной к нему силе. Но этот закон неприменим к большим деформациям - невозможно растянуть пружинку, к примеру, на 10 километров. Значит, не каждый закон физики является законом природы. Надо разбираться в пропорциональных линейных зависимостях. Тут становится очевидным, что удаленные от равновесия системы могут проходить гладкие участки и попадать в так называемые точки бифуркации - то есть раздвоения.

Очень часто (особенно политики) говорят, что развитие должно идти по пути эволюции, а не революции. Но эволюция, в том числе биологическая, после гладкого развития идет как раз через бифуркацию, и предсказать, какой она будет, пройдя точку раздвоения, очень сложно. Степень точности прогноза - примерно как у синоптиков. Вероятность стопроцентного совпадения маловероятна, так как даже сама природа не знает, как себя поведет, пройдя точку бифуркации.

Предельно упрощая, можно сказать, что жизнь на Земле представляет собой систему, состоящую из двух сопряженных подсистем - биосферы и человеческой «экономики». Каждая из них является иерархически организованной активной средой, ни одна из них уже не может существовать сама по себе.

Именно в этом направлении сейчас развивается наука о живом - в поиске соотношения между потоками энергии вещества и информации и пространственно-временной самоорганизации. Например, почему рыбы часто плавают большими косяками? Таким образом они снижают сопротивление воды для каждой отдельной движущейся рыбы. Но вдруг появляется акула, и косяк распадается. Это функционально, но и это - изменение симметрии. А если посмотреть на произошедшее с точки зрения биофизика, это - бифуркация.

На пороге нового прорыва

К началу XX века практически все классические фундаментальные науки вроде бы были завершены. Географические открытия сделаны, астрономы все ближайшие созвездия и устройство Солнечной системы описали, геологи все разведали, физика и химия завершены, уравнения Максвелла написаны, электромагнетизм понят, теоретическая механика усвоена, таблица Менделеева есть, люди понимают, как устроены органические соединения. Казалось, все известно - дальше двигаться некуда.

И вдруг прорыв: появляется квантовая механика, появляется теория относительности, квантовая механика приходит в химию и придает ей новый мощный импульс. Уже к середине XX века у классических наук образовалось огромное количество ответвлений: физика твердого тела, физика высокомолекулярных соединений, физика космоса и так далее. Науки рассыпались по огромному числу прикладных направлений. Владимир Иванович Вернадский, знаменитый русский и советский ученый-естествоиспытатель, писал: «Рост научного знания XX века быстро стирает грани между отдельными науками. Мы все больше специализируемся не по наукам, а по проблемам».

Благодаря этому произошел сильнейший рывок цивилизации, мощный прорыв. Но человечество, обрадовавшись сильному старту, весьма бездарно провело вторую половину XX века и начало XXI. Прикладные направления наук не дали миру ничего по сути нового, они постоянно обновляют оболочку уже старых идей. Например, атомные электростанции стали намного надежнее, но сам принцип их функционирования не изменился с 1950-х годов. Гаджеты становятся тоньше, мы говорим, что они более современные, но принципы их действия остаются прежними.

Для нового цивилизационного прорыва настало время сосредоточиться не на прикладных направлениях науки, а на фундаментальных, чтобы дать миру новый прорыв, который затем прикладные направления будут еще сто лет эксплуатировать.

Происходит новое соединение наук. Физика начала соединять два своих крайних крыла, совмещая представления о самом малом и самом большом, то есть элементарные частицы и Вселенную. Ученые плотно занимаются теорией Большого взрыва. Такие же процессы идут в биологии. Исследователи консолидируют свои знания о большом (биосфере) и малом (геноме).

Кстати, в неспособности научить видеть картину мира в целом заключается одно из слабых мест и современного образования: ученики и студенты получают много разрозненных сведений, существующих в сознании обособленно, не превращаясь в единое знание. Часто употребляемое выражение «клиповое мышление» как нельзя лучше описывает эту ситуацию.

Что даст объединение наук? Скоро узнаем и, возможно, удивимся. Знаменитый английский писатель Артур Кларк, один из так называемой «большой тройки научных фантастов», чье влияние не ограничивалось рамками литературы, в своей книге «Черты будущего» (1962 год) сформулировал «законы Кларка», и первый из них гласит: «Если заслуженный, умудренный жизненным опытом ученый говорит, что нечто в науке возможно, он почти наверняка прав. Если же он говорит, что нечто невозможно, он почти определенно ошибается».


Top