Зависимость направления магнитных линий от направления тока в проводниках. Магнитное поле и его графическое изображение. Неоднородное и однородное магнитное поле

Графическое изображение магнитного поля. Поток вектора магнитной индукции

Магнитное поле можно изобразить графически при помощи линий магнитной индукции. Линией магнитной индукции называют линию, касательная к которой в каждой точке совпадает с направлением вектора индукции магнитного поля (рис. 6).

Исследования показали, что линии магнитной индукции являются замкнутыми линиями, охватывающими токи. Густота линий магнитной индукции пропорциональна величине вектора в данном месте поля. В случае магнитного поля прямого тока линии магнитной индукции имеют форму концентрических окружностей, лежащих в плоскостях, перпендикулярных току, с центром на прямой с током. Направление линий магнитной индукции независимо от формы тока можно определить по правилу буравчика. В случае магнитного поля прямого тока буравчик необходимо вращать таким образом, чтобы его поступательное движение совпало с направлением тока в проводе, тогда вращательное движение ручки буравчика совпадет с направлением линий магнитной индукции (рис. 7).

На рис. 8 и 9 изображены картины линий магнитной индукции поля кругового тока и поля соленоида. Соленоид представляет собой совокупность круговых токов с общей осью.

Линии вектора индукции внутри соленоида параллельны друг другу, густота линий одинакова, поле однородно ( = const). Поле соленоида аналогично полю постоянного магнита. Конец соленоида, из которого выходят линии индукции аналогичен северному полюсу – N, противоположный конец соленоида аналогичен южному полюсу – S.

Число линий магнитной индукции, пронизывающих определенную поверхность, называют магнитным потоком через эту поверхность. Обозначают магнитный поток буквой Ф в (или Ф).


,
(3)

Где α – угол, образуемый вектором и нормалью к поверхности (рис. 10).

– проекция вектора на нормаль к площадке S.

Измеряется магнитный поток в веберах (Вб): [Ф]=[B]× [S]=Тл× м 2 = =

Постоянные магниты – тела, сохраняющие длительное время намагниченность. Полюс - место магнита, где обнаруживается наиболее сильное действие N – северный полюс магнита S – южный полюс магнита S N S Дугообразный магнит Полосовой магнит N 2

В чем же причины намагничивания? Гипотеза Ампера + S Согласно гипотезы Ампера (1775 - 1836 г.) в атомах и молекулах в результате движения электронов возникают кольцевые токи. В 1897 г. гипотезу подтвердил английский учёный Томсон, а в 1910 г. измерил токи американский учёный Милликен. - е N При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом. 3

Движение электронов представляет собой круговой ток, а вокруг проводника с электрическим током существует магнитное поле. 4 4

Искусственные и естественные магниты. Искусственные магниты -полученные намагничиванием железа при внесении его в магнитное поле. Естественные магниты - магнитный железняк. Природные магниты, т. е. кусочки магнитного железняка магнетита 5

Свойства магнитов: 1. Наиболее сильное магнитное действие обнаруживают полюса магнитов; 2. Хорошо притягиваются магнитом чугун, сталь, железо и некоторые сплавы; 3. Железо, сталь, никель в присутствии магнитного железняка приобретают магнитные свойства; 4. Разноименные магнитные полюса притягиваются, одноименные отталкиваются. 6 6

Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. 7

Магнитное поле постоянных магнитов Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками. Магнитное поле - составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц. 8

Магнитные поля изображаются с помощью магнитных линий. Это воображаемые линии, вдоль которых располагаются магнитные стрелки, помещенные в магнитное поле. Магнитные линии можно провести через любую точку магнитного поля, они имеют направление и всегда замкнуты. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита. 9

По картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля. В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг у другу, гуще, чем в тех местах, где поле слабее. 10

НЕОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ Сила, с которой действует поле магнита может быть различной как по модулю, так и по направлению. Такое поле называют неоднородным. Характеристики неоднородного магнитного поля: магнитные линии искривлены; густота магнитных линий различна; сила, с которой магнитное поле действует на магнитную стрелку, различна в разных точках этого поля по величине и направлению. 12

Где существует неоднородное магнитное поле? Вокруг прямого проводника с током. На рисунке изображен участок такого проводника, расположенный перпендикулярно плоскости чертежа. Ток направлен от нас. Видно, что магнитные линии представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника 13

ОДНОРОДНОЕ МАГНИТНОЕ ПОЛЕ Характеристики однородного магнитного поля: магнитные линии параллельные прямые; густота магнитных линий везде одинакова; сила, с которой магнитное поле действует на магнитную стрелку, одинакова во всех точках этого поля по величине и направлению. 15

Где существует однородное магнитное поле? Внутри полосового магнита и внутри соленоида, если его длина много больше, чем диаметр 16

Это интересно Магнитные полюсы Земли много раз менялись местами (инверсии). За последний миллион лет это случалось 7 раз. 570 лет назад магнитные полюса Земли были расположены в районе экватора 17

Это интересно Если на Солнце происходит мощная вспышка, то усиливается солнечный ветер. Это вызывает возмущение земного магнитного поля и приводит к магнитной буре. Пролетающие мимо Земли частицы солнечного ветра создают дополнительные магнитные поля. Магнитные бури причиняют серьёзный вред: они оказывают сильное влияние на радиосвязь, на линии электросвязи, многие измерительные приборы показывают неверные результаты. 18

Это интересно Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно. В состав космического излучения, кроме электронов, протонов, входят и другие частицы, движущиеся в пространстве с огромными скоростями. 19

Это интересно Результатом взаимодействия солнечного ветра с магнитным полем Земли является полярное сияние. Вторгаясь в земную атмосферу, частицы солнечного ветра (в основном электроны и протоны) направляются магнитным полем и определённым образом фокусируются. Сталкиваясь с атомами и молекулами атмосферного воздуха, они ионизируют и возбуждают их, в результате чего возникает свечение, которое называют полярным сиянием. 20

Это интересно Изучением влияния различных факторов погодных условий на организм здорового и больного человека занимается специальная дисциплина - биометрология. Магнитные бури вносят разлад в работу сердечно -сосудистой, дыхательной и нервной системы, а также изменяют вязкость крови; у больных атеросклерозом и тромбофлебитом она становится гуще и быстрее свёртывается, а у здоровых людей, напротив, повышается. 21

Закрепление 1. 2. 3. 4. 5. 6. Какие тела называют постоянными магнитами? Чем порождается магнитное поле постоянного магнита? Что называют магнитными полюсами магнита? Чем отличаются однородные магнитные поля от неоднородных? Как взаимодействуют между собой полюсы магнитов? Объясните, почему иголка притягивает скрепку? (см. рис) 22

Магнитное поле и его характеристики. При прохождении электрического тока по проводнику вокруг него образуется магнитное поле . Магнитное поле представляет собой один из видов материи. Оно обладает энергией, которая проявляет себя в виде электромагнитных сил, действующих на отдельные движущиеся электрические заряды (электроны и ионы) и на их потоки, т. е. электрический ток. Под влиянием электромагнитных сил движущиеся заряженные частицы отклоняются от своего первоначального пути в направлении, перпендикулярном полю (рис. 34). Магнитное поле образуется только вокруг движущихся электрических зарядов, и его действие распространяется тоже лишь на движущиеся заряды. Магнитное и электрические поля неразрывны и образуют совместно единое электромагнитное поле . Всякое изменение электрического поля приводит к появлению магнитного поля и, наоборот, всякое изменение магнитного поля сопровождается возникновением электрического поля. Электромагнитное поле распространяется со скоростью света, т. е. 300 000 км/с.

Графическое изображение магнитного поля. Графически магнитное поле изображают магнитными силовыми линиями, которые проводят так, чтобы направление силовой линии в каждой точке поля совпадало с направлением сил поля; магнитные силовые линии всегда являются непрерывными и замкнутыми. Направление магнитного поля в каждой точке может быть определено при помощи магнитной стрелки. Северный полюс стрелки всегда устанавливается в направлении действия сил поля. Конец постоянного магнита, из которого выходят силовые линии (рис. 35, а), принято считать северным полюсом, а противоположный конец, в который входят силовые линии,- южным полюсом (силовые линии, проходящие внутри магнита, не показаны). Распределение силовых линий между полюсами плоского магнита можно обнаружить при помощи стальных опилок, насыпанных на лист бумаги, положенный на полюсы (рис. 35, б). Для магнитного поля в воздушном зазоре между двумя параллельно расположенными разноименными полюсами постоянного магнита характерно равномерное распределение силовых магнитных линий (рис. 36) (силовые линии, проходящие внутри магнита, не показаны).

Рис. 37. Магнитный поток, пронизывающий катушку при перпендикулярном (а) и наклонном (б) ее положениях по отношению к направлению магнитных силовых линий.

Для более наглядного изображения магнитного поля силовые линии располагают реже или гуще. В тех местах, где магнитное роле сильнее, силовые линии располагают ближе друг к другу, там же, где оно слабее,- дальше друг от друга. Силовые линии нигде не пересекаются.

Во многих случаях удобно рассматривать магнитные силовые линии как некоторые упругие растянутые нити, которые стремятся сократиться, а также взаимно отталкиваются друг от друга (имеют взаимный боковой распор). Такое механическое представление о силовых линиях позволяет наглядно объяснить возникновение электромагнитных сил при взаимодействии магнитного поля и Проводника с током, а также двух магнитных полей.

Основными характеристиками магнитного поля являются магнитная индукция, магнитный поток, магнитная проницаемость и напряженность магнитного поля.

Магнитная индукция и магнитный поток. Интенсивность магнитного поля, т. е.способность его производить работу, определяется величиной, называемой магнитной индукцией. Чем сильнее магнитноe поле, созданное постоянным магнитом или электромагнитом, тем большую индукцию оно имеет. Магнитную индукцию В можно характеризовать плотностью силовых магнитных линий, т. е. числом силовых линий, проходящих через площадь 1 м 2 или 1 см 2 , расположенную перпендикулярно магнитному полю. Различают однородные и неоднородные магнитные поля. В однородном магнитном поле магнитная индукция в каждой точке поля имеет одинаковое значение и направление. Однородным может считаться поле в воздушном зазоре между разноименными полюсами магнита или электромагнита (см.рис.36) при некотором удалении от его краев. Магнитный поток Ф, проходящий через какую-либо поверхность, определяется общим числом магнитных силовых линий, пронизывающих эту поверхность, например катушку 1 (рис. 37, а), следовательно, в однородном магнитном поле

Ф = BS (40)

где S - площадь поперечного сечения поверхности, через которую проходят магнитные силовые линии. Отсюда следует, что в таком поле магнитная индукция равна потоку, поделенному на площадь S поперечного сечения:

B = Ф /S (41)

Если какая-либо поверхность расположена наклонно по отношению к направлению магнитных силовых линий (рис. 37, б), то пронизывающий ее поток будет меньше, чем при перпендикулярном ее положении, т. е. Ф 2 будет меньше Ф 1 .

В системе единиц СИ магнитный поток измеряется в веберах (Вб), эта единица имеет размерность В*с (вольт-секунда). Магнитная индукция в системе единиц СИ измеряется в теслах (Тл); 1 Тл = 1 Вб/м 2 .

Магнитная проницаемость. Магнитная индукция зависит не только от силы тока, проходящего по прямолинейному проводнику или катушке, но и от свойств среды, в которой создается магнитное поле. Величиной, характеризующей магнитные свойства среды, служит абсолютная магнитная проницаемость? а. Единицей ее измерения является генри на метр (1 Гн/м = 1 Ом*с/м).
В среде с большей магнитной проницаемостью электрический ток определенной силы создает магнитное поле с большей индукцией. Установлено, что магнитная проницаемость воздуха и всех веществ, за исключением ферромагнитных материалов (см. § 18), имеет примерно то же значение, – что и магнитная проницаемость вакуума. Абсолютную магнитную проницаемость вакуума называют магнитной постоянной, ? о = 4?*10 -7 Гн/м. Магнитная проницаемость ферромагнитных материалов в тысячи и даже десятки тысяч раз больше магнитной проницаемости неферромагнитных веществ. Отношение магнитной проницаемости? а какого-либо вещества к магнитной проницаемости вакуума? о называют относительной магнитной проницаемостью:

? = ? а /? о (42)

Напряженность магнитного поля. Напряженность И не зависит от магнитных свойств среды, но учитывает влияние силы тока и формы проводников на интенсивность магнитного поля в данной точке пространства. Магнитная индукция и напряженность связаны отношением

H = B/? а = B/(?? о) (43)

Следовательно, в среде с неизменной магнитной проницаемостью индукция магнитного поля пропорциональна его напряженности.
Напряженность магнитного поля измеряется в амперах на метр (А/м) или амперах на сантиметр (А/см).

Темой этого урока будет магнитное поле и его графическое изображение. Мы обсудим неоднородное и однородное магнитное поле. Для начала дадим определение магнитному полю, расскажем, с чем оно связано и какими оно обладает свойствами. Научимся изображать его на графиках. Также узнаем, как определяется неоднородное и однородное магнитное поле.

Cегодня мы в первую очередь повторим, что такое магнитное поле. Магнитное поле - силовое поле, которое образуется вокруг проводника, по которому протекает электрический ток. Оно связано с движущимися зарядами .

Теперь необходимо отметить свойства магнитного поля . Вы знаете, что с зарядом связано несколько полей. В частности, электрическое поле. Но мы будем обсуждать именно магнитное поле, создаваемое движущимися зарядами. У магнитного поля несколько свойств. Первое: магнитное поле создается движущимися электрическими зарядами . Иными словами, магнитное поле образуется вокруг проводника, по которому протекает электрический ток. Следующее свойство, которое говорит, как магнитное поле определяется. Определяется оно по действию на другой движущийся электрический заряд. Или, говорят, на другой электрический ток. Наличие магнитного поля мы можем определить по действию на стрелку компаса, на т.н. магнитную стрелку.

Еще одно свойство: магнитное поле оказывает силовое действие . Поэтому говорят, что магнитное поле материально.

Эти три свойства являются отличительными чертами магнитного поля. После того, как мы определились с тем, что такое магнитное поле, и определили свойства такого поля, необходимо сказать, как магнитное поле исследуют. В первую очередь магнитное поле исследуется при помощи рамки с током. Если мы возьмем проводник, сделаем из этого проводника круглую или квадратную рамку и по этой рамке будем пропускать электрический ток, то в магнитном поле эта рамка будет определенным образом поворачиваться.

Рис. 1. Рамка с током поворачивается во внешнем магнитном поле

По тому, как поворачивается эта рамка, мы можем судить о магнитном поле . Только здесь есть одно важное условие: рамка должна быть очень маленькая или она должна быть очень малых размеров по сравнению с расстояниями, на которых мы изучаем магнитное поле. Такую рамку называют контур с током.

Исследовать магнитное поле мы можем и при помощи магнитных стрелок, размещая их в магнитном поле и наблюдая за их поведением.

Рис. 2. Действие магнитного поля на магнитные стрелки

Следующее, о чем мы будем говорить, о том, как можно изобразить магнитное поле. В результате исследований, которые были проведены в течение долгого времени, стало понятно, что магнитное поле удобно изображать при помощи магнитных линий. Чтобы пронаблюдать магнитные линии , проделаем один эксперимент. Для нашего эксперимента потребуется постоянный магнит, металлические железные опилки, стекло и лист белой бумаги.

Рис. 3. Железные опилки выстраиваются вдоль линий магнитного поля

Магнит накрываем стеклянной пластиной, а сверху кладем лист бумаги, белый лист бумаги. Сверху на лист бумаги сыплем железные опилки. В результате будет видно, как проявляются линии магнитного поля. То, что мы увидим, - это линии магнитного поля постоянного магнита. Их еще называют иногда спектром магнитных линий. Заметьте, что линии существуют по всем трем направлениям, не только в плоскости.

Магнитная линия - воображаемая линия, вдоль которой выстраивались бы оси магнитных стрелок.

Рис. 4. Схематическое изображение магнитной линии

Посмотрите, на рисунке представлено следующее: линия изогнутая, направление магнитной линии определяется направлением магнитной стрелки. Направление указывает северный полюс магнитной стрелки. Очень удобно изображать линии именно при помощи стрелок.

Рис. 5. Как обозначается направление силовых линий

Теперь поговорим о свойствах магнитных линий. Во-первых, у магнитных линий нет ни начала, ни конца. Это линии замкнутые. Раз магнитные линии замкнуты, то не существует магнитных зарядов.

Второе: это линии, которые не пересекаются, не прерываются, не свиваются каким-либо образом. При помощи магнитных линий мы можем характеризовать магнитное поле, представить себе не только его форму, но и говорить о силовом воздействии. Если изображать большую густоту таких линий, то в этом месте, в этой точке пространства, у нас силовое действие будет больше.

Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно . Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным . В заключение урока хотелось бы обратить ваше внимание на следующие рисунки.

Рис. 6. Неоднородное магнитное поле

Во-первых, теперь мы уже знаем, что магнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.

На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.

Рис. 7. Однородное магнитное поле

Однородное магнитное поле - это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.

Список дополнительной литературы:

Белкин И.К. Электрическое и магнитное поля // Квант. — 1984. — № 3. — С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. — 2009. — № 3. — С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. - М., 1974

Мы знаем, что проводник с током создает вокруг себя магнитное поле . Магнитное поле создает также и постоянный магнит . Будут ли отличаться созданные ими поля? Несомненно, будут. Различие между ними можно увидеть наглядно, если создать графические изображения магнитных полей. Магнитные линии полей будут направлены по-разному.

Однородные магнитные поля

В случае проводника с током магнитные линии образуют замкнутые концентрические окружности вокруг проводника. Если посмотреть на проводник с током и образованное им магнитное поле в разрезе, то мы увидим набор кругов различного диаметра. На рисунке слева изображен как раз проводник с током.

Действие магнитного поля будет тем сильнее, чем ближе к проводнику. По мере удаления от проводника действие и, соответственно, сила магнитного поля будут уменьшаться.

В случае постоянного магнита мы имеем линии, выходящие из южного полюса магнита, проходящие вдоль самого тела магнита и входящие в его северный полюс.

Зарисовав такой магнит и магнитные линии образованного им магнитного поля графически, мы увидим, что сильнее всего действие магнитного поля будет возле полюсов, где магнитные линии расположены наиболее густо. Рисунок слева с двумя магнитами как раз изображает магнитное поле постоянных магнитов.

Похожую картину расположения магнитных линий мы увидим в случае соленоида или катушки с током. Наибольшую интенсивность магнитные линии будут иметь у двух концов или торцов катушки. Во всех вышеприведенных случаях мы имели неоднородное магнитное поле. Магнитные линии имели разное направление, и их густота была различна.

Может ли магнитное поле быть однородным?

Если мы рассмотрим внимательно графическое изображение соленоида, то увидим, что магнитные линии расположены параллельно и имеют одинаковую густоту расположения только в одном месте внутри соленоида.

Такая же картина будет наблюдаться внутри тела постоянного магнита. И если в случае постоянного магнита мы не можем «забраться» внутрь его тела, не разрушив его при этом, то в случае катушки без сердечника или соленоида, мы получаем внутри них однородное магнитное поле.

Такое поле может потребоваться человеку в ряде технологических процессов, поэтому можно сконструировать соленоиды достаточного размера, чтобы можно было проводить необходимые процессы внутри них.

Графически мы привыкли изображать магнитные линии окружностями или отрезками, то есть мы как бы видим их сбоку или вдоль. А как быть в случае, если рисунок создан так, что эти линии направлены на нас или в обратную сторону от нас? Тогда их рисуют в виде точки или крестика.

Если они направлены на нас, то их изображают в виде точки, как будто это острие летящей на нас стрелы. В противоположном случае, когда они направлены от нас, их рисуют в виде крестика, как будто это хвостовое оперение удаляющейся от нас стрелы.


Top