Уравнение регрессии. Несколько слов о «линейной» регрессии

Как уже было сказано выше, в случае линейной зависимости уравнение регрессии является уравнением прямой линии.

Различают

У = а у/х + b у/х Х

Х = а х/у + b х/у Y

Здесь а и b – коэффициенты, или параметры, которые определяются по формулам. Значение коэффициента b вычисляется

Из формул видно, что коэффициенты регрессии b у/х и b х/у имеют тот же знак, что и коэффициент корреляции, размерность, равную отношению размерностей изучаемых показателей Х и У , и связаны соотношением:

Для вычисления коэффициента а достаточно подставить в уравнения регрессии средние значения коррелируемых переменных



График теоретических линий регрессии (рис. 17) имеет вид:

Рис 17. Теоретические линии регрессии

Из приведённых выше формул легко доказать, что угловые коэффициенты прямых регрессии равны соответственно


Так как
, то
. Это означает, что прямая регрессииY на Х имеет меньший наклон к оси абсцисс, чем прямая регрессии Х на Y .

Чем ближе к единице, тем меньше угол между прямыми регрессии. Эти прямые сливаются только тогда, когда
.

При
прямые регрессии описываются уравнениями
,
.

Таким образом, уравнения регрессии позволяют:

    определить, насколько изменяется одна величина относительно другой;

    прогнозировать результаты.

2. Методика выполнения расчётно-графической работы №2

Расчётно-графическая работа содержит 4 раздела.

В первом разделе:

    Формулируется тема;

    Формулируется цель работы.

Во втором разделе:

    Формулируется условие задачи;

    Заполняется таблица исходных данных выборки.

В третьем разделе:

    Результаты измерений представляются в виде вариационного ряда;

    Даётся графическое представление вариационного ряда.

    Формулируется вывод.

В четвёртом разделе:

    Рассчитываются основные статистические характеристики ряда измерений;

    По итогам расчётов формулируется вывод.

Оформление работы:

    Работа выполняется в отдельной тетради или на форматных листах.

    Титульный лист заполняется по образцу.

Российский Государственный Университет

физической культуры, спорта, молодёжи и туризма

Кафедра естественнонаучных дисциплин

Корреляционный и регрессионный анализы

Расчётно-графическая работа №2

по курсу математики

Выполнил: студент 1 к. 1 пот. 1гр.

Иванов С.М.

Преподаватель:

доц. кафедры ЕНД и ИТ

Москва – 2012

(Пример оформления титульного листа)

Пример выполнения расчётно-графической работы №2.

Тема работы: Корреляционный и регрессионный анализы.

Цель работы: Определить взаимосвязь показателей двух выборок.

Ход выполнения работы:

    Придумать две выборки из своего вида спорта с одинаковым объемом n.

    Нарисовать корреляционное поле, сделать предварительный вывод.

    Определить достоверность коэффициента корреляции и сделать окончательный вывод.

    Построить теоретические линии регрессии на корреляционном поле и показать точку их пересечения.

1. Условие задачи: У группы спортсменов определяли результаты в беге на 100 м с барьерами X i (с) и прыжках в длину Y i (м) (табл.). Проверить, существует ли корреляционная связь между исследуемыми признаками и определить достоверность коэффициента корреляции.

Таблица исходных данных выборки: Результаты приведены в таблице исходных данных.

Таблица 6

Результаты бега и прыжка

п/п

X i , с

Y i , м

п/п

X i , с

Y i , м

Решение:

2 . Построим корреляционное поле (диаграмму рассеяния) и сделаем предварительный вывод относительно связи между исследуемыми признаками.

Рис 18. Корреляционное поле

Предварительный вывод:

Связь между показателями результатов в беге на 100 м с барьерами X i (с) и прыжками в длину Y i (см):

    линейная;

    отрицательная;

3 . Рассчитаем парный линейный коэффициент корреляции Бравэ – Пирсона, предварительно рассчитав основные статистические показатели двух выборок. Для их расчёта составим таблицу, в которой предпоследний и последний столбцы необходимы для расчёта стандартных отклонений, если они неизвестны. Для нашего примера эти значения рассчитаны в первой расчётно-графической работе, но для наглядности покажем расчёт дополнительно.

Таблица 7

Вспомогательная таблица для расчета коэффициента

корреляции Бравэ – Пирсона

X i , с

Y i , см

13,59

x =
,

y =
,

.

Полученное значение коэффициента корреляции позволяет подтвердить предварительный вывод и сделать окончательное заключение – связь между исследуемыми признаками:

    линейная;

    отрицательная;

4 . Определим достоверность коэффициента корреляции.

Предположим, что связь между результатом в беге на 100 м и прыжком в длину отсутствует (Н о : r = 0).

Вывод: существует сильная, отрицательная статистически достоверная (р =0,95) связь между бегом с препятствиями на дистанцию 100 м и прыжком в длину. Это означает, что с улучшением результата в прыжке в длину уменьшается время пробега дистанции 100 м.

5 . Вычислим коэффициент детерминации:

Следовательно, только 96% взаимосвязи результатов в беге на 100 м с барьерами и в прыжке в длину объясняется их взаимовлиянием, а остальная часть, т. е. 4% объясняется влиянием других неучтённых факторов.

6. Рассчитаем коэффициенты прямого и обратного уравнений регрессии, воспользовавшись формулами, подставим значения рассчитанных коэффициентов в соответствующую формулу и запишем прямое и обратное уравнения регрессии:

Y = а 1 + b 1 Х - прямое уравнение регрессии;

Х = а 2 + b 2 Y - обратное уравнение регрессии.

Воспользуемся результатами расчёта, приведёнными выше:

x =
; y =
;
;
13,59;
6,4,

Рассчитаем коэффициент b 1 , воспользовавшись формулой:

Для расчета коэффициента а 1 b 1 Х и Y

а 1 и b 1

Y = 22 - 1,15Х

Рассчитаем коэффициент b 2 , воспользовавшись формулой:

Для расчета коэффициента а 2 подставим в прямое уравнение регрессии вместо b 2 рассчитанное значение, а вместо Х и Y средние арифметические значения двух выборок из таблицы:

Подставим полученные значения коэффициентов а 1 и b 1 в прямое уравнение регрессии и запишем уравнение прямой линии:

Х = 18,92 - 0,83Y

Таким образом, мы получили прямое и обратное уравнения регрессии:

Y = 22 - 1,15Х - прямое уравнение регрессии;

Х = 18,92 - 0,83Y - обратное уравнение регрессии.

Для проверки правильности расчётов достаточно подставить в прямое уравнение среднее значение и определить значениеY . Полученное значение Y должно быть близким или равным среднему значению .

Y = 22 - 1,15 = 22 - 1,1513,59 = 6,4 =.

При подстановке в обратное уравнение регрессии среднего значения , полученное значение Х должно быть близким или равным среднему значению .

Х = 18,92 - 0,83= 18,92 - 0,83 6,4 = 13,6 = .

7. Построим линии регрессии на корреляционном поле.

Для графического построения теоретических линий регрессии, как и для построения любой прямой, необходимо иметь две точки из диапазона значений Х и Y .

Причём, в прямом уравнении регрессии независимая переменная Х , а зависимая Y , а в обратном – независимая переменная Y , а зависимая Х.

Y = 22 - 1,15Х

X

Y

Х = 18,92 - 0,83Y

Y

X

Координатами точки пересечения линий прямого и обратного уравнений регрессии являются значения средних арифметических двух выборок (с учётом погрешностей округлений при приближённых расчётах).

Вывод: зная результат бега с препятствиями на дистанцию 100 м, по прямому уравнению регрессии, можно теоретически определить результат прыжка в длину; и наоборот, зная результат прыжка в длину по обратному уравнению регрессии, можно определить результат бега с препятствиями.

Использование графического метода .
Этот метод применяют для наглядного изображения формы связи между изучаемыми экономическими показателями. Для этого в прямоугольной системе координат строят график, по оси ординат откладывают индивидуальные значения результативного признака Y, а по оси абсцисс - индивидуальные значения факторного признака X.
Совокупность точек результативного и факторного признаков называется полем корреляции .
На основании поля корреляции можно выдвинуть гипотезу (для генеральной совокупности) о том, что связь между всеми возможными значениями X и Y носит линейный характер.

Линейное уравнение регрессии имеет вид y = bx + a + ε
Здесь ε - случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения ε i для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям x i и y i можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где e i – наблюдаемые значения (оценки) ошибок ε i , а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β - используют МНК (метод наименьших квадратов).
Система нормальных уравнений.

Для наших данных система уравнений имеет вид:

10a + 356b = 49
356a + 2135b = 9485

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17

Уравнение регрессии :
y = 68.16 x - 11.17

1. Параметры уравнения регрессии.
Выборочные средние.



Выборочные дисперсии.


Среднеквадратическое отклонение

1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока :
0.1 < r xy < 0.3: слабая;
0.3 < r xy < 0.5: умеренная;
0.5 < r xy < 0.7: заметная;
0.7 < r xy < 0.9: высокая;
0.9 < r xy < 1: весьма высокая;
В нашем примере связь между признаком Y фактором X весьма высокая и прямая.

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у, но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x , то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x , можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе - обратная). В нашем примере связь прямая.

1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета - коэффициенты. Коэффициент эластичности находится по формуле:


Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами - Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.

1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.


Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.

1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.98 2 = 0.9596
т.е. в 95.96 % случаев изменения x приводят к изменению у. Другими словами - точность подбора уравнения регрессии - высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.

x y x 2 y 2 x y y(x) (y i -y cp) 2 (y-y(x)) 2 (x i -x cp) 2 |y - y x |:y
0.371 15.6 0.1376 243.36 5.79 14.11 780.89 2.21 0.1864 0.0953
0.399 19.9 0.1592 396.01 7.94 16.02 559.06 15.04 0.163 0.1949
0.502 22.7 0.252 515.29 11.4 23.04 434.49 0.1176 0.0905 0.0151
0.572 34.2 0.3272 1169.64 19.56 27.81 87.32 40.78 0.0533 0.1867
0.607 44.5 .3684 1980.25 27.01 30.2 0.9131 204.49 0.0383 0.3214
0.655 26.8 0.429 718.24 17.55 33.47 280.38 44.51 0.0218 0.2489
0.763 35.7 0.5822 1274.49 27.24 40.83 61.54 26.35 0.0016 0.1438
0.873 30.6 0.7621 936.36 26.71 48.33 167.56 314.39 0.0049 0.5794
2.48 161.9 6.17 26211.61 402 158.07 14008.04 14.66 2.82 0.0236
7.23 391.9 9.18 33445.25 545.2 391.9 16380.18 662.54 3.38 1.81

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим t крит:
t крит = (7;0.05) = 1.895
где m = 1 - количество объясняющих переменных.
Если t набл > t критич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку t набл > t крит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически - значим
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:


S 2 y = 94.6484 - необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
S y = 9.7287 - стандартная ошибка оценки (стандартная ошибка регрессии).
S a - стандартное отклонение случайной величины a.


S b - стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. (a + bx p ± ε)
где

Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1 (-11.17 + 68.16*1 ± 6.4554)
(50.53;63.44)

Индивидуальные доверительные интервалы для Y при данном значении X .
(a + bx i ± ε)
где

x i y = -11.17 + 68.16x i ε i y min y max
0.371 14.11 19.91 -5.8 34.02
0.399 16.02 19.85 -3.83 35.87
0.502 23.04 19.67 3.38 42.71
0.572 27.81 19.57 8.24 47.38
0.607 30.2 19.53 10.67 49.73
0.655 33.47 19.49 13.98 52.96
0.763 40.83 19.44 21.4 60.27
0.873 48.33 19.45 28.88 67.78
2.48 158.07 25.72 132.36 183.79

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H 0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H 1 не равно) на уровне значимости α=0.05.
t крит = (7;0.05) = 1.895


Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).


Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b - t крит S b ; b + t крит S b)
(68.1618 - 1.895 5.2894; 68.1618 + 1.895 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a - t a)
(-11.1744 - 1.895 5.3429; -11.1744 + 1.895 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.

2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:


где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Проверка на наличие автокорреляции остатков .
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция , нежели отрицательная автокорреляция . В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию , можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности : выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Обнаружение автокорреляции

1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения e i с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения e i (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости e i от e i-1 .

Критерий Дарбина-Уотсона .
Этот критерий является наиболее известным для обнаружения автокорреляции.
При статистическом анализе уравнения регрессии на начальном этапе часто проверяют выполнимость одной предпосылки: условия статистической независимости отклонений между собой. При этом проверяется некоррелированность соседних величин e i .

y y(x) e i = y-y(x) e 2 (e i - e i-1) 2
15.6 14.11 1.49 2.21 0
19.9 16.02 3.88 15.04 5.72
22.7 23.04 -0.3429 0.1176 17.81
34.2 27.81 6.39 40.78 45.28
44.5 30.2 14.3 204.49 62.64
26.8 33.47 -6.67 44.51 439.82
35.7 40.83 -5.13 26.35 2.37
30.6 48.33 -17.73 314.39 158.7
161.9 158.07 3.83 14.66 464.81
662.54 1197.14

Для анализа коррелированности отклонений используют статистику Дарбина-Уотсона:

Критические значения d 1 и d 2 определяются на основе специальных таблиц для требуемого уровня значимости α, числа наблюдений n = 9 и количества объясняющих переменных m=1.
Автокорреляция отсутствует, если выполняется следующее условие:
d 1 < DW и d 2 < DW < 4 - d 2 .
Не обращаясь к таблицам, можно пользоваться приблизительным правилом и считать, что автокорреляция остатков отсутствует, если 1.5 < DW < 2.5. Для более надежного вывода целесообразно обращаться к табличным значениям.

Тема: Элементы теории корреляции

Объекты ряда генеральных совокупностей обладают несколькими подлежащими изучению признаками Х, У, ..., которые можно интерпретировать как систему взаимосвязанных величин. Примерами могут служить: масса животного и количество гемоглабина в крови, рост мужчины и объем грудной клетки, увеличение рабочих мест в помещении и уровень заболеваемости вирусными инфекциями, количество вводимого препарата и концентрация его в крови и т.д.

Очевидно, что между этими величинами существует связь, но она не может быть строгой фукциональной зависимостью, так как на изменение одной из величин влияет не только изменение второй величины, но и другие факторы. В таких случаях говорят, что две величины связаны стохастической (т.е. случайной) зависимостью. Мы будем изучать частный случай стохастической зависимости – корреляционную зависимость .

ОПРЕДЕЛЕНИЕ: стохастической , если на изменение одной из них влияет не только изменение второй величины, но и другие факторы.

ОПРЕДЕЛЕНИЕ: Зависимость случайных величин называют статистической, если изменения одной из них приводит к изменению закона распределения другой.

ОПРЕДЕЛЕНИЕ: Если изменение одной из случайных величин влечет изменение среднего другой случайной величины, то статистическую зависимость называют корреляционной.

Примерами корреляционной зависимости являются связи между:

Массой тела и ростом;

    дозой ионизирующего излучения и числом мутаций;

    пигментом волос человека и цветом глаз;

    показателями уровня жизни населения и процентом смертности;

    количеством пропущенных студентами лекций и оценкой на экзамене и т.д.

Именно корреляционные зависимости наиболее часто встречаются в природе в силу взаимовлияния и тесного переплетения огромного множества самых различных факторов, определяющих значения изучаемых показателей.

Результаты наблюдения, проведенные над тем или иным биологическим объктом по корреляционно связанным признакам У и Х можно изобразить точками на плоскости, построив систему прямоугольных координат. В результате получается некая диаграмма рассеяния, позволяющая судить о форме и тесноте связи между варьирующими признаками.

Если эту связь можно будет апроксимировать некоторой кривой, то можно будет прогнозировать изменение одного из параметров при целенаправленном изменении другого параметра.

Корреляционную зависимость от
можно описать с помощью уравнения вида

(1)

г
де
условное среднее величины , соответствующее значениювеличины
, а
некоторая функция. Уравнение (1) называется на
.

Рис.1. Линейная регрессия значима. Модель
.

Функцию
называютвыборочной регрессией на
, а ее график –выборочной линией регрессии на
.

Совершенно аналогично выборочным уравнением регрессии
на является уравнение
.

В зависимости от вида уравнения регрессии и формы соответствующей линии регрессии определяют форму корреляционной зависимости между рассматриваемыми величинами – линейной, квадратической, показательной, экспоненциальной.

Важнейшим является вопрос выбора вида функции регрессии
[или
], например линейная или нелинейная (показательная, логарифмическая и т.д.)

На практике вид функции регрессии можно определить построив на координатной плоскости множество точек, соответствующих всем имеющимся парам наблюдений (
).

Рис. 2. Линейная регрессия незначима. Модель
.

Р
ис. 3. Нелинейная модель
.

Например, на рис.1. видна тенденция роста значений с ростом
, при этом средние значениярасполагается визуально на прямой. Имеет смысл использовать линейную модель (вид зависимостиот
принято называть моделью) зависимостиот
.

На рис.2. средние значения не зависят от, следовательно линейная регрессия незначима (функция регрессии постоянна и равна).

На рис. 3. прослеживается тенденция нелинейности модели.

Примеры прямолинейной зависимости:

    увеличение количество потребляемого йода и снижение показателя заболеваемости зобом,

    увеличение стажа рабочего и повышение производительности.

Примеры криволинейной зависимости:

    с увеличением осадков – увеличивается урожай, но это происходит до определенного предела осадков. После критической точки осадки уже оказываются излишними, почва заболачивается и урожай снижается,

    связь между дозой хлора, примененной для обеззараживания воды и количеством бактерий в 1 мл. воды. С увеличением дозы хлора количество бактерий в воде снижается, но по достижению критической точки количество бактерий будет оставаться постоянным (или совсем отсутствовать), как бы мы не увеличивали дозу хлора.

Линейная регрессия

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости от Х (или Х от У), например, линейную модель
, необходимо определить конкретные значения коэффициентов модели.

При различных значениях а и
можно построить бесконечное число зависимостей вида
т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Метод наименьших квадратов (мнк)

Линейную функцию
ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используемметод наименьших квадратов.

Рис.4. Пояснение к оценке коэффициентов методом наименьших квадратов

Обозначим: - значение, вычисленное по уравнению

- измеренное значение,

- разность между измеренными и вычисленными по уравнению значениям,

.

В методе наименьших квадратов требуется, чтобы , разность между измеренными и вычисленными по уравнению значениям , была минимальной. Следовательно, находимо подобрать коэффициентыа и так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Это условие достигается если параметры а и будут вычислены по формулам:

называют коэффициентом регрессии ; называютсвободным членом уравнения регрессии.

Полученная прямая является оценкой для теоретической линии регрессии. Имеем

Итак,
являетсяуравнением линейной регрессии.

Регрессия может быть прямой
и обратной
.

ОПРЕДЕЛЕНИЕ: Обратная регрессия означает, что при росте одного параметра, значения другого параметра уменьшаются.

Иногда так бывает: задачу можно решить чуть ли не арифметически, а на ум прежде всего приходят всякие интегралы Лебега и функции Бесселя. Вот начинаешь обучать нейронную сеть, потом добавляешь еще парочку скрытых слоев, экспериментируешь с количеством нейронов, функциями активации, потом вспоминаешь о SVM и Random Forest и начинаешь все сначала. И все же, несмотря на прямо таки изобилие занимательных статистических методов обучения, линейная регрессия остается одним из популярных инструментов. И для этого есть свои предпосылки, не последнее месте среди которых занимает интуитивность в интерпретации модели.

Немного формул

В простейшем случае линейную модель можно представить так:

Y i = a 0 + a 1 x i + ε i

Где a 0 - математическое ожидание зависимой переменной y i , когда переменная x i равна нулю; a 1 - ожидаемое изменение зависимой переменной y i при изменении x i на единицу (этот коэффициент подбирают таким образом, чтобы величина ½Σ(y i -ŷ i) 2 была минимальна - это так называемая «функция невязки»); ε i - случайная ошибка.
При этом коэффициенты a 1 и a 0 можно выразить через матан коэффициент корреляции Пирсона , стандартные отклонения и средние значения переменных x и y:

 1 = cor(y, x)σ y /σ x

 0 = ȳ - â 1 x̄

Диагностика и ошибки модели

Чтобы модель была корректной, необходимо выполнение условий Гаусса-Маркова , т.е. ошибки должны быть гомоскедастичны с нулевым математическим ожиданием. График остатков e i = y i - ŷ i помогает определить, насколько адекватна построенная модель (e i можно считать оценкой ε i).
Посмотрим на график остатков в случае простой линейной зависимости y 1 ~ x (здесь и далее все примеры приводятся на языке R ):

Скрытый текст

set.seed(1) n <- 100 x <- runif(n) y1 <- x + rnorm(n, sd=.1) fit1 <- lm(y1 ~ x) par(mfrow=c(1, 2)) plot(x, y1, pch=21, col="black", bg="lightblue", cex=.9) abline(fit1) plot(x, resid(fit1), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



Остатки более-менее равномерно распределены относительно горизонтальной оси, что говорит об «отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях». А теперь исследуем такой же график, но построенный для линейной модели, которая на самом деле не является линейной:

Скрытый текст

y2 <- log(x) + rnorm(n, sd=.1) fit2 <- lm(y2 ~ x) plot(x, y2, pch=21, col="black", bg="lightblue", cex=.9) abline(fit2) plot(x, resid(fit2), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



По графику y 2 ~ x вроде бы можно предположить линейную зависимость, но у остатков есть паттерн, а значит, чистая линейная регрессия тут не пройдет . А вот что на самом деле означает гетероскедастичность :

Скрытый текст

y3 <- x + rnorm(n, sd=.001*x) fit3 <- lm(y3 ~ x) plot(x, y3, pch=21, col="black", bg="lightblue", cex=.9) abline(fit3) plot(x, resid(fit3), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



Линейная модель с такими «раздувающимися» остатками не корректна. Еще иногда бывает полезно построить график квантилей остатков против квантилей, которые можно было бы ожидать при условии, что остатки нормально распределены:

Скрытый текст

qqnorm(resid(fit1)) qqline(resid(fit1)) qqnorm(resid(fit2)) qqline(resid(fit2))



На втором графике четко видно, что предположение о нормальности остатков можно отвергнуть (что опять таки говорит о некорректности модели). А еще бывают такие ситуации:

Скрытый текст

x4 <- c(9, x) y4 <- c(3, x + rnorm(n, sd=.1)) fit4 <- lm(y4 ~ x4) par(mfrow=c(1, 1)) plot(x4, y4, pch=21, col="black", bg="lightblue", cex=.9) abline(fit4)



Это так называемый «выброс» , который может сильно исказить результаты и привести к ошибочным выводам. В R есть средства для его обнаружения - с помощью стандартизованой меры dfbetas и hat values :
> round(dfbetas(fit4), 3) (Intercept) x4 1 15.987 -26.342 2 -0.131 0.062 3 -0.049 0.017 4 0.083 0.000 5 0.023 0.037 6 -0.245 0.131 7 0.055 0.084 8 0.027 0.055 .....
> round(hatvalues(fit4), 3) 1 2 3 4 5 6 7 8 9 10... 0.810 0.012 0.011 0.010 0.013 0.014 0.013 0.014 0.010 0.010...
Как видно, первый член вектора x4 оказывает заметно большее влияние на параметры регрессионной модели, нежели остальные, являясь, таким образом, выбросом.

Выбор модели при множественной регрессии

Естественно, что при множественной регрессии возникает вопрос: стоит ли учитывать все переменные? С одной стороны, казалось бы, что стоит, т.к. любая переменная потенциально несет полезную информацию. Кроме того, увеличивая количество переменных, мы увеличиваем и R 2 (кстати, именно по этой причине эту меру нельзя считать надежной при оценке качества модели). С другой стороны, стоить помнить о таких вещах, как AIC и BIC , которые вводят штрафы за сложность модели. Абсолютное значение информационного критерия само по себе не имеет смысла, поэтому надо сравнивать эти значения у нескольких моделей: в нашем случае - с разным количеством переменных. Модель с минимальным значением информационного критерия будет наилучшей (хотя тут есть о чем поспорить).
Рассмотрим датасет UScrime из библиотеки MASS:
library(MASS) data(UScrime) stepAIC(lm(y~., data=UScrime))
Модель с наименьшим значением AIC имеет следующие параметры:
Call: lm(formula = y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data = UScrime) Coefficients: (Intercept) M Ed Po1 M.F U1 U2 Ineq Prob -6426.101 9.332 18.012 10.265 2.234 -6.087 18.735 6.133 -3796.032
Таким образом, оптимальная модель с учетом AIC будет такой:
fit_aic <- lm(y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data=UScrime) summary(fit_aic)
... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -6426.101 1194.611 -5.379 4.04e-06 *** M 9.332 3.350 2.786 0.00828 ** Ed 18.012 5.275 3.414 0.00153 ** Po1 10.265 1.552 6.613 8.26e-08 *** M.F 2.234 1.360 1.642 0.10874 U1 -6.087 3.339 -1.823 0.07622 . U2 18.735 7.248 2.585 0.01371 * Ineq 6.133 1.396 4.394 8.63e-05 *** Prob -3796.032 1490.646 -2.547 0.01505 * Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Если внимательно присмотреться, то окажется, что у переменных M.F и U1 довольно высокое значение p-value, что как бы намекает нам, что эти переменные не так уж и важны. Но p-value - довольно неоднозначная мера при оценки важности той или иной переменной для статистической модели. Наглядно этот факт демонстрирует пример:
data <- read.table("http://www4.stat.ncsu.edu/~stefanski/NSF_Supported/Hidden_Images/orly_owl_files/orly_owl_Lin_9p_5_flat.txt") fit <- lm(V1~. -1, data=data) summary(fit)$coef
Estimate Std. Error t value Pr(>|t|) V2 1.1912939 0.1401286 8.501431 3.325404e-17 V3 0.9354776 0.1271192 7.359057 2.568432e-13 V4 0.9311644 0.1240912 7.503873 8.816818e-14 V5 1.1644978 0.1385375 8.405652 7.370156e-17 V6 1.0613459 0.1317248 8.057300 1.242584e-15 V7 1.0092041 0.1287784 7.836752 7.021785e-15 V8 0.9307010 0.1219609 7.631143 3.391212e-14 V9 0.8624487 0.1198499 7.196073 8.362082e-13 V10 0.9763194 0.0879140 11.105393 6.027585e-28
p-values у каждой переменной - практически нуль, и можно предположить, что все переменные важны для этой линейной модели. Но на самом деле, если присмотреться к остаткам, выходит как-то так:

Скрытый текст

plot(predict(fit), resid(fit), pch=".")



И все же, альтернативный подход основывается на дисперсионном анализе , в котором значения p-value играют ключевую роль. Сравним модель без переменной M.F с моделью, построенной с учетом только AIС:
fit_aic0 <- update(fit_aic, ~ . - M.F) anova(fit_aic0, fit_aic)
Analysis of Variance Table Model 1: y ~ M + Ed + Po1 + U1 + U2 + Ineq + Prob Model 2: y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob Res.Df RSS Df Sum of Sq F Pr(>F) 1 39 1556227 2 38 1453068 1 103159 2.6978 0.1087
Учитывая P-значение, равное 0.1087, при уровне значимости α=0.05 мы можем сделать вывод, что нет статистически значимого свидетельства в пользу альтернативной гипотезы, т.е. в пользу модели с дополнительной переменной M.F.

х - называется предиктором - независимой или объясняющей переменной.

Для данной величины х, Y — значение переменной у (называемой зависимой, выходной переменной, или переменной отклика), которое расположено на линии оценки. Это есть значение, которое мы ожидаем для у (в среднем), если мы знаем величину х, и называется она «предсказанное значение у» (рис. 5).

а - свободный член (пересечение) линии оценки; это значение Y, когда х = 0.

b - угловой коэффициент или градиент оценённой линии; он представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем х на одну единицу (рис. 5). Коэффициент b называют коэффициентом регрессии.

Например: при увеличении температуры тела человека на 1 о С, частота пульса увеличивается в среднем на 10 ударов в минуту.

Рисунок 5. Линия линейной регрессии, показывающая коэффициент а и угловой коэффициент b (величину возрастания Y при увеличении х на одну единицу)

Математически решение уравнения линейной регрессии сводится к вычислению параметров а и b таким образом, чтобы точки исходных данных корреляционного поля как можно ближе лежали к прямой регрессии .

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого Френсису Гальтону (1889). Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» или «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Мы наблюдаем регрессию к среднему при скрининге и клинических исследованиях, когда подгруппа пациентов может быть выбрана для лечения потому, что их уровни определённой переменной, скажем, холестерина, крайне высоки (или низки). Если это измерение через некоторое время повторяется, средняя величина второго считывания для подгруппы обычно меньше, чем при первом считывании, имея тенденцию (т.е. регрессируя) к среднему, подобранному по возрасту и полу в популяции, независимо от лечения, которое они могут получить. Пациенты, набранные в клиническое исследование на основе высокого уровня холестерина при их первом осмотре, таким образом, вероятно, покажут в среднем падение уровня холестерина при втором осмотре, даже если в этот период они не лечились.

Часто метод регрессионного анализа применяется для разработки нормативных шкал и стандартов физического развития.


Насколько хорошо линия регрессии согласуется с данными, можно судить, рассчитав коэффициент R (обычно выраженный в процентах и называемый коэффициентом детерминации), который равняется квадрату коэффициента корреляции (r 2). Он представляет собой долю или процент дисперсии у, который можно объяснить связью с х, т.е. долю вариации признака-результата, сложившуюся под влиянием независимого признака. Может принимать значения в диапазоне от 0 до 1, или соответственно от 0 до 100%. Разность (100% - R) представляет собой процент дисперсии у, который нельзя объяснить этим взаимодействием.

Пример

Соотношение между ростом (измеренным в см) и систолическим артериальным давлением (САД, измеренным в мм рт. ст.) у детей. Мы провели анализ парной линейной регрессии зависимости САД от роста (рис. 6). Имеется существенное линейное соотношение между ростом и САД.

Рисунок 6. Двумерный график, показывающий соотношение между систолическим артериальным давлением и ростом. Изображена оценённая линия регрессии, систолическое артериальное давление.

Уравнение линии оценённой регрессии имеет следующий вид:

САД = 46,28 + 0,48 х рост.

В этом примере свободный член не представляет интереса (рост, равный нулю, явно вне диапазона величин, наблюдаемых в исследовании). Однако мы можем интерпретировать угловой коэффициент; предсказано, что у этих детей САД увеличивается в среднем на 0,48 мм рт.ст. при увеличении роста на один сантиметр

Мы можем применить уравнение регрессии для предсказания САД, которое мы ожидаем у ребёнка при данном росте. Например, ребёнок ростом 115 см имеет предсказанное САД, равное 46,28 + (0,48 х 115) = 101,48 мм рт. ст., ребёнок ростом 130 имеет предсказанное САД, 46,28 + (0,48 х 130) = 108,68 мм рт. ст.

При расчете коэффициента корреляции, установлено, что он равен 0,55, что указывает на прямую корреляционную связь средней силы. В этом случае коэффициент детерминации r 2 = 0,55 2 = 0,3 . Таким образом, можно сказать, что доля влияния роста на уровень артериального давления у детей не превышает 30%, соответственно на долю других факторов приходится 70% влияния.

Линейная (простая) регрессия ограничивается рассмотрением связи между зависимой переменной и только одной независимой переменной. Если в связи присутствует более одной независимой переменной, тогда нам необходимо обратиться к множественной регрессии. Уравнение для такой регрессии выглядит так:

y = a + bx 1 +b 2 x 2 +.... + b n х n

Можно интересоваться результатом влияния нескольких независимых переменных х 1 , х 2 , .., х n на переменную отклика у. Если мы полагаем, что эти х могут быть взаимозависимы, то не должны смотреть по отдельности на эффект изменения значения одного х на у, но должны одновременно принимать во внимание величины всех других х.

Пример

Поскольку между ростом и массой тела ребёнка существует сильная зависимость, можно поинтересоваться, изменяется ли также соотно-шение между ростом и систолическим артериальным давлением, если принять во внимание также и массу тела ребёнка и его пол. Множественная линейная регрессия позволяет изучить совместный эффект этих нескольких независимых переменных на у.

Уравнение множественной регрессии в этом случае может иметь такой вид:

САД = 79,44 - (0,03 х рост) + (1,18 х вес) + (4,23 х пол)*

* - (для признака пол используют значения 0 - мальчик, 1 - девочка)

Согласно этому уравнению, девочка, рост которой 115 см и масса тела 37 кг, будет иметь прогнозируемое САД:

САД = 79,44 - (0,03 х 115) + (1,18 х 37) + (4,23 х 1) = 123,88 мм.рт.ст.

Логистическая регрессия очень похожа на линейную; её применяют, когда есть интересующий нас бинарный исход (т.е. наличие/отсутствие симптома или субъекта, который имеет/не имеет заболевания) и ряд предикторов. Из уравнения логистической регрессии можно определить, какие предикторы влияют на исход, и, используя значения предикторов пациента, оценить вероятность того, что он/она будет иметь определённый исход. Например: возникнут или нет осложнения, будет лечение эффективным или не будет.

Начинают создания бинарной переменной, чтобы представить эти два исхода (например, «имеет болезнь» = 1, «не имеет болезни» = 0). Однако мы не можем применить эти два значения как зависимую переменную в анализе линейной регрессии, поскольку предположение нормальности нарушено, и мы не можем интерпретировать предсказанные величины, которые не равны нулю или единице.

Фактически, вместо этого мы берём вероятность того, что субъект классифицируется в ближайшую категорию (т.е. «имеет болезнь») зависимой переменной, и чтобы преодолеть математические трудности, применяют логистическое, преобразование, в уравнении регрессии — натуральный логарифм отношения вероятности «болезни» (p) к вероятности «нет болезни» (1-p).

Интегративный процесс, называемый методом максимального правдоподобия, а не обычная регрессия (так как мы не можем применить процедуру линейной регрессии) создаёт из данных выборки оценку уравнения логистической регрессии

logit (p) = a + bx 1 +b 2 x 2 +.... + b n х n

logit (р) — оценка значения истинной вероятности того, что пациент с индивидуальным набором значений для х 1 ... х n имеет заболевание;

а — оценка константы (свободный член, пересечение);

b 1 , b 2 ,... ,b n — оценки коэффициентов логистической регрессии.

1. Вопросы по теме занятия:

1. Дайте определение функциональной и корреляционной связи.

2. Приведите примеры прямой и обратной корреляционной связи.

3. Укажите размеры коэффициентов корреляции при слабой, средней и сильной связи между признаками.

4. В каких случаях применяется ранговый метод вычисления коэффициента корреляции?

5. В каких случаях применяется расчет коэффициента корреляции Пирсона?

6. Каковы основные этапы вычисления коэффициента корреляции ранговым методом?

7. Дайте определение «регрессии». В чем сущность метода регрессии?

8. Охарактеризуйте формулу уравнения простой линейной регрессии.

9. Дайте определение коэффициента регрессии.

10. Какой можно сделать вывод, если коэффициент регрессии веса по росту равен 0,26кг/см?

11. Для чего используется формула уравнения регрессии?

12. Что такое коэффициент детерминации?

13. В каких случаях используется уравнение множественной регрессии.

14. Для чего применяется метод логистической регрессии?


Top