Какие бывают виды пластмассы. История пластика

Различные предоставляют широкие возможности для создания определенных конструкций и деталей. Неслучайно подобные элементы применяются в самых разных сферах: от машиностроения и радиотехники до медицины и сельского хозяйства. Трубы, комплектующие для машин, корпусы для приборов и бытовые изделия - лишь немалый список того, что можно создать из пластмассы.

Основные разновидности

Виды пластмасс и их применение базируются на том, какие полимеры лежат в основе - природные или синтетические. Их подвергают нагреванию, давлению, после чего выполняют формовку изделий разной сложности. Главное, что при этих манипуляциях сохраняется форма готового изделия. Все пластмассы бывают термопластичными, то есть обратимыми, и термореактивными (необратимыми).

Обратимые становятся пластичными под воздействием нагревания и дальнейшего давления, при этом коренные изменения в составе не происходят. Опрессованное и уже ставшее твердым изделие всегда можно размягчить и придать ему определенную форму. Известны такие виды пластмасс (термопластичных), как полиэтилен и полистирол. Первый отличается стойкостью к коррозии и диэлектрическими свойствами. На его основе производятся трубы, пленки, листы, он широко применяется в качестве изоляционного материала.

От стирола к полистиролу

В результате полимеризации стирола получают полистирол. Из него в дальнейшем создают разные детали на основе литья или прессования. Такие виды пластмасс широко используются для производства крупногабаритных деталей и изделий, например, элементов для холодильников или ванных комнат. Среди термореактивных пластмасс чаще всего используются пресспорошки, волокниты, которые можно в дальнейшем переработать для получения различных деталей.

Пластмасса - очень удобный в работе материал, на основе которого можно создавать множество товаров. В зависимости от термических свойств выделяются следующие виды переработки пластмасс:

  1. Прессование. Это самый популярный способ получения изделий из термоактивных материалов. Формование выполняется в специальных формах под воздействием высоких температур и давления.
  2. Литье под давлением. Этот способ дает возможность создать изделия разной формы. Для этого специальные емкости заполняются расплавленной пластмассой. Сам процесс отличается высокой производительностью и экономичностью.
  3. Экструзия. Посредством такой переработки получают многие виды изделий из пластмассы, например, трубы, нити, шнуры, пленки разного назначения.
  4. Выдувание. Этот способ - идеальная возможность создания изделий объемной формы, которые будут иметь шов на месте смыкания пресс-формы.
  5. Штампование. Этим способом создаются изделия из листов пластмассы и пластин с применением специальных форм.

Особенности полимеризации

Пластмассу можно получить полимеризацией и поликонденсацией. В первом случае молекулы мономеров связываются, образуя полимерные цепи без высвобождения воды и спирта, во втором - образуются побочные вещества, не связанные с полимером. Различные методы и виды полимеризации пластмассы позволяют получить составы, которые отличаются исходными свойствами. Важную роль в этом процессе играют правильная температура и теплота реакции, чтобы формовочная масса полимеризировалась правильно. При полимеризации важно обращать внимание на остаточный мономер - чем его меньше, тем надежнее и дольше в эксплуатации будет пластмасса.

Пористость

Если были нарушены режимы полимеризации, это может привести к дефектам готовых изделий. В них появятся пузырьки, разводы и повышенное внутреннее напряжение. Существуют различные виды пористости пластмассы:

  1. Газовая. Она появляется вследствие того, что нарушается режим полимеризации, и перекись бензоила закипает. Если газовые поры образуются в толщине протеза, то его требуется переделать.
  2. Гранулярная пористость возникает из-за избытка полимерного порошка, испарения мономера с поверхности материала или недостаточно качественного перемешивания пластмассового состава.
  3. Пористость сжатия. Возникает из-за уменьшения объема полимеризующейся массы под воздействием недостаточного давления или нехватки формовочной массы.

Что учесть?

Следует знать о том, какие виды пористости пластмассы бывают, и не допускать дефектов в конечном изделии. Нужно обратить внимание и на мелкую пористость на поверхности протеза. Такое случается из-за слишком большого количества мономера, причем пористость не подвергается шлифовке. Если во время работы с пластмассой образуется внутреннее остаточное напряжение, изделие будет растрескиваться. Такая ситуация возникает вследствие нарушения режима полимеризации, когда объект слишком долго находится в кипящей воде.

В любом случае ухудшение механических свойств полимерных материалов в итоге приводит к их старению, а потому технологию производства нужно соблюдать целиком и полностью.

Базисные пластмассы - что это?

Рассматриваемый материал широко применяется при изготовлении базисов съемных пластиночных протезов. Самые популярные виды базисных пластмасс имеют синтетическую основу. Масса для базисов, как правило, это сочетание порошка и жидкости. При их смешивании создается формовочная масса, которая твердеет при нагревании или самопроизвольно. В зависимости от этого получается материал горячего отверждения или самотвердеющий. К базисным пластмассам горячей полимеризации относятся:

  • этакрил (АКР-15);
  • акрел;
  • фторакс;
  • акронил.

Материалами для создания съемных протезов являются эластичные пластмассы, которые нужны как мягкие амортизирующие прокладки для базисов. Они должны быть безопасными для организма, прочно соединяться с базисом протеза, сохранять эластичность и постоянный объем. Среди таких пластмасс внимания заслуживают эладент, который является подкладкой для базисов съемных протезов, и ортоксил, который получают на основе силоксановой смолы.

Строительные материалы

Основные виды пластмасс применяются в разных областях строительства в зависимости от состава. К самым популярным материалам относятся следующие:

  1. Полимербетоны. Это композиционная пластмасса, которая создается на основе термореактивных полимеров. Самыми лучшими с точки зрения физико-механических свойств считаются полимербетоны на основе эпоксидных смол. Хрупкость материала компенсируется волокнистыми наполнителями - асбестом, стекловолокном. Полимербетоны используются при создании конструкций, стойких к химическим веществам.
  2. Стеклопластики - это современные виды строительных пластмасс, которые представляют собой листовые материалы из стеклянных волокон, тканей, связываемых полимером. Стеклопластик создается на основе ориентированных или рубленых волокон, а также тканей или матов.
  3. Напольные материалы. Они представлены разными видами рулонных покрытий и жидковязовых составов на основе полимеров. В строительстве широко применяется линолеум на основе поливинилхлорида, обладающий хорошими показателями теплозвукоизоляции. Бесшовный мастичный пол можно создать на основе смеси сырья с олигомерами.

Пластмасса и ее маркировка

Существует 5 видов пластмасс, которые имеют свое обозначение:

  1. Полиэтилентерефталат (имеет буквенную маркировку PETE или PET). Отличается экономичностью и широкой сферой применения: используется для хранения различных напитков, масел, косметики.
  2. Полиэтилен высокой плотности (маркируется как HDPE или PE HD). Материал отличается экономичностью, легкостью, стойкостью к температурным перепадам. Применяется для изготовления одноразовой посуды, контейнеров для хранения пищевых продуктов, сумок, игрушек.
  3. Поливинилхлорид (маркируется как PVC или V). Из этого материала создаются оконные профили, детали мебели, пленка для натяжного потолка, трубы, напольные покрытия и многое другое. Из-за содержания бисфенола А, винилхлорида, фталатов поливинилхлорида не используется при производстве продукции (контейнеров, посуды и т. п.) для хранения пищи.
  4. Полиэтилен (маркировка LDPE или PEBD). Этот дешевый материал используется при производстве пакетов, мусорных мешков, линолеума и компакт-дисков.
  5. Полипропилен (имеет буквенную маркировку PP). Отличается прочностью, термостойкостью, годится для производства пищевых контейнеров, упаковки для продуктов питания, игрушек, шприцов.

Популярные виды пластмасс - полистирол и поликарбонат. Они нашли широкое применение в самых разных отраслях.

Сферы применения

Различные виды пластмасс находят применение в самых разных отраслях. При этом требования к ним примерно одинаковые - простота в работе и безопасность. Рассмотрим подробнее виды термопластичных пластмасс и сферы их применения.

Пластмасса

Сфера применения

Полиэтилен (высокого и низкого давления)

Производство упаковки, ненагруженных деталей машин и оборудования, футляров, покрытий, фольги.

Полистирол

Производство оборудования, изоляционных пленок, стиропиана.

Полипропилен

Нашел широкое применение в деталей автомобилей, элементов для холодильного оборудования.

Поливинилхлорид (ПВХ)

Производство химического оборудования, труб, различных деталей, упаковки, покрытий полов.

Поликарбонаты

Производство точных деталей машин, аппаратуры, радио- и электротехники.

Термореактивные виды пластмасс (таблица)

Материал

Сфера применения

Фенопласты

Применяются для создания изделий галантереи (пуговиц и т. п.), пепельниц, вилок, розеток, корпусов радио- и телефонных аппаратов.

Аминопласты

Применяются для изготовления клея для дерева, электротехнических деталей, галантереи, тонких покрытий для украшения, пенистых материалов.

Стекловолокниты

Применяются при изготовлении силовых электротехнических деталей в машиностроении, крупногабаритных изделий простых форм (кузовов автомашин, лодок, корпусов приборов и тому подобного).

Полиэстеры

На основе полиэстеров создаются спасательные лодки, части автомобилей, мебель, корпусы планеров и вертолетов, гофрированные плиты для крыш, плафоны ламп, мачты для антенн, лыжи и палки, удочки, защитные каски и тому подобное.

Эпоксидная смола

Используется как в электрических машинах, трансформаторах (в качестве высоковольтной изоляции) и других аппаратах, при производстве телефонной арматуры, в радиотехнике (для изготовления печатных схем).

Вместо заключения

В представленной статье мы рассмотрели виды пластмасс и их применение. При использовании таких материалов учитывается много факторов, начиная от физико-механических свойств и заканчивая особенностями работы. При всей своей экономичности пластмасса обладает достаточным уровнем безопасности, что существенно расширяет сферу ее применения.

История пластмассы очень захватывающая. Ниже приведены даты самых важных событий в истории пластика за последние 150 лет.

Обратите внимание на то, как много видов пластика имеют знакомые торговые названия, как например тефлон (Teflon) и пенопласт (Styrofoam).

Что более интересно, так это то, сколько известных видов пластика на самом деле были обнаружены случайно!

Ранние годы пластика

  • 1862 г - открытие паркезина . Паркезин - первый искусственный пластик, который был создан Александром Парксом в Лондоне и представлял собою органический материал, полученный из целлюлозы. После нагревания и предания формы его охлаждали и он сохранял полученную форму;
  • 1863 г открытие нитрата целлюлозы или целлулоида . Материал был открыт Джоном Уэсли Хайатом, когда он пытался найти замену слоновой кости в бильярдных шарах. Целлулоид (Celluloid) стал известен как материал, использующийся в первой гибкой кинопленке для фотографии и кино;
  • 1872 г - открытие поливинилхлорида (ПВХ) . Впервые поливинилхлорид был создан немецким химиком Евгением Бауманом, который так и не запатентовал свое открытие. В 1913 году его соотечественник Фридрих Клатте изобрел новый метод полимеризации винилхлорида с использованием солнечного света. Именно он стал первым изобретателем, который получил патент на поливинилхлорид. Тем не менее, применятся ПВХ стал только после того, как в 1926 году Вальдо Семон усовершенствовала материал.

Период перед Второй мировой войной

  • 1908 г - открытие целлофана ®. В 1900 году швейцарского инженера текстильной промышленности Жака Э. Бранденбергера впервые посетила мысль создать прозрачный, защитный материал для упаковки . В 1908 году он разработал первую машину по производству прозрачных листов регенерированной целлюлозы. Первым клиентом Жака стала американская компания по производству конфет «Whitman’s», которая решила использовать целлофан для обертывания шоколада;
  • 1909 г - открытие бакелита . Бакелит (полиоксибензилметиленгликольангидрид) был одним из первых видов пластика, изготовленных из синтетических компонентов. Он был разработан химиком Лео Бекеландом, уроженцем Бельгии, проживавшим в Нью-Йорке. Бакелит, фенолформальдегидная термореактивная смола, благодаря его низкой электрической проводимости и термостойким свойствам применяется в электрических изоляторах , корпусах для радио и телефонов и в таких разнообразных изделиях, как посуда, ювелирные изделия, трубы и детские игрушки;
  • 1926 г - открытие винила или ПВХ . Винил был изобретен в США Вальтером Симоном, исследователем из компании по производству компонентов для самолетов «B.F. Goodrich». Впервые материал был использован в шарах для гольфа и каблуках. Сегодня винил является вторым самым производимым пластиком в мире и используется во многих изделиях, таких как занавески для душа, плащи, провода, различные приборы, напольная плитка, краски и поверхностные покрытия;
  • 1933 г - открытие поливинилиденхлорида (ПДВХ/PVDC) или сарана (Saran) . Материал был случайно обнаружен Ральфом Вайли в лаборатории американской химической компании «Dow Chemical» и был впервые использован военными для покрытия им истребителей для защиты от соленой морской воды. Производители автомобилей также использовали поливинилиденхлорид в качестве обивочного материала. После Второй мировой войны компания нашла способ избавиться от зеленого цвета и неприятного запаха сарана и, таким образом, его одобрили для изготовления в качестве упаковочного материал для пищевых продуктов . В 1953 году его стали продавать под торговым именем «Saran Wrap»®;
  • 1935 г - открытие полиэтилена низкой плотности (ПЭВД/LPDE) . Этот материал был обнаружен Реджинальдом Гибсоном и Эриком Фосеттом в лаборатории британского промышленного гиганта «Империя химической промышленности» (Imperial Chemical Industries) в двух видах: полиэтилен низкой плотности (ПЭВД /LDPE) и полиэтилен высокой плотности (HDPE/ПЭНД) . Полиэтилен является дешевым, гибкий, прочный и химически стойким материалом. ПЭВД используется для изготовления пленок и упаковочных материалов , в том числе и полиэтиленовых пакетов. ПЭНД чаще всего используется для изготовления контейнеров, сантехники и автомобильных запчастей ;
  • 1936 г - открытие полиметилметакрилата (ПММА) или акрила . К 1936 году американские, британские и немецкие компании производили полиметилметакрилат, более известный как акрил. Хотя акрил в наши дни широко применяется в жидком виде красках и синтетических волокнах, в твердом виде он довольно крепкий и более прозрачный, чем стекло. Торговые марки «Plexiglas» и «Lucite» продают акрил как заменитель стекла ;
  • 1937 г - открытие полиуретана . Полиуретан - органический полимер , который был изобретен химиком Отто Байером из немецкой компании «Фридрих Байер и Компания». Полиуретаны используются в виде эластичного пенопласта в обивке, матрацах, затычек для ушей, химически стойких покрытиях, в специальных клеях, в герметиках и упаковке. В твердой форме полиуретан используется в материалах для термоизоляции зданий , в водонагревателях, при рефрижераторных перевозках, при коммерческих и некоммерческих охлаждениях. Полиуретаны продаются под торговыми названиями «Igamid»® в качестве пластмассовых материалов и «Perlon»® в качестве волокон;
  • 1938 г - первое применение полистирола . Полистирол был впервые обнаружен в 1839 году немецким аптекарем Эдуардом Симоном, но его начали применять только в 1930-х годах, когда ученые из самой крупной химической компании в мире «BASF» разработали коммерческий способ изготовления полистирола. Полистирол является прочным пластиком, который можно изготавливать литьем под давлением, прессованием, экструзией или формованием с раздувом. Материал широко применяется в пластиковых стаканах, картонных коробках для яиц, в упаковках для арахиса, а также в строительных материалах и электроприборах ;
  • 1938 г - открытие политетрафторэтилена (ПТФЭ) или тефлона . Полимер был открыт случайно химиком Ройем Планкеттом, работавшим тогда на американскую химическую компанию «DuPont». ПТФЭ был одним из самых широко применяемых пластиков на войне, который (совершенно секретная информация!) наносили на металлические поверхности в качестве защитного покрытия с низким коэффициентом трения для предотвращения царапин и коррозии. В начале 1960-х годов огромной популярностью стали пользоваться тефлоновые антипригарные сковороды. ПТФЭ был позже использован для синтеза первых мембранных тканей «Gore-Tex». Смешивая тефлон с соединениями фтора, получают материал, который используется для изготовления ложных ракет, чтобы отвлечь ракеты с тепловым наведением;
  • 1938 г - открытие нейлона и неопрена . Оба материала были разработаны Уоллесом Каротерсом, когда его команда исследователей из компании «DuPont» пыталась найти синтетическую замену шелку. Неопрен, синтетический каучук, был впервые изготовлен в 1931 году. Дальнейшие исследования полимеров привели к развитию нейлона, известный также как «чудо-волокно». В 1939 году компания «DuPont» впервые объявила и продемонстрировала нейлон и нейлоновые чулки американской общественности на Всемирной выставке в Нью-Йорке. Также нейлон ранее применялся в изготовлении лески, хирургической нити и зубной щетки;
  • 1942 г - открытие ненасыщенного полиэстера или ПЭТ (еще называют полиэфир, лавсан и дакрон ). Материал был запатентован английскими химиками Джоном Рекс Уинфилдом и Джеймсом Теннант Диксоном и применялся для изготовления синтетических волокон , которые продавали в послевоенное время. Так как полиэстер более плотный по сравнению с другими дешевыми видами пластмассы, его применяют в изготовлении бутылок для газированных и кислых напитков. И так как полиэстер также крепкий и устойчивый к стиранию, он используется для изготовления механических запчастей , пищевых подносах и других предметах. Пленка из полиэстера от компании «Mylar» используются в аудио и видео кассетах.

Фторопласт обладает довольно низким коэффициентом трения, хорошей износостойкостью, стойкостью к воздействиям повышенных температур, благодаря чему успешно используется в различных отраслях.

Важные открытия после Второй мировой войны

  • 1951 г - открытие полиэтилена высокой плотности или полипропилена . Два американских химика Пол Хоган и Роберт Бэнкс, работающие в нефтяной компании «Phillips Petroleum» в Нидерландах, нашли способ производства кристаллического полипропилена. Полипропилен похож на своего «родственника» полиэтилена и его стоимость относительно низкая, но в отличие от полиэтилена, он гораздо более крепкий и используется практически повсюду, начиная с изготовления пластиковых бутылок и заканчивая коврами и пластиковой мебелью. Применяют его очень активно и в автомобильной промышленности;
  • 1954 г - открытие пенополистирола (Styrofoam) или пенопласта . Английское обозначение пенополистирола «Styrofoam» а качестве торгового названия позаимствовала химическая компания «The Dow Chemical Company». Пенопласт был изобретен случайно ученым Рэем Макинтайром, который пытался изготовить гибкий электрический изолятор, комбинируя стирол с изобутиленом под давлением, что являлось довольно взрывоопасным соединением. В результате его эксперимента был открыт пенополистирол с пузырьками, который в 30 раз легче обычного полистирола.

Оглянитесь вокруг комнаты, где Вы находитесь прямо сейчас, и подсчитайте, сколько предметов полностью или частично состоят из пластика. Вы сразу увидите, насколько пластик вездесущ. Он действительно везде!

Видео: "Пластик - уникальный синтетический материал"

Слово полимер широко вошло в обиход, однако, не все точно знают, что оно означает. Каждого из нас окружают предметы, сделанные из полимеров. Что это такое и чем они полезны для человека?

Сложная химия полимеров доступными словами.

Высокомолекулярные соединения, состоящие из повторяющихся мономерных звеньев, которые соединяются химическими связями или слабыми межмолекулярными силами и характеризующиеся определенным набором свойств, называют полимерами. Они бывают разного происхождения:

  • Органические;
  • Неорганические;
  • Элементоорганические.

Основные свойства полимеров – эластичность и почти полное отсутствие хрупкости их кристаллических соединений нашли широкое применение в производстве пластиковых изделий. Под влиянием направленных механических воздействий молекулы полимеров имеют способность к ориентированию.

Разделяют полимеры и по реакции на температурные режимы – одни из них могут плавиться в процессе нагрева и возвращаться в исходное состояние при охлаждении. Эти полимеры получили название термопластичных , а ряд полимеров, которые при нагреве разрушаются, минуя стадию плавления, относят к термореактивным.

По происхождению различают полимеры природные и синтетические.

В промышленности полимерное сырье используется практически во всех областях. За счет способности некоторых полимеров после переработки принимать свои исходные свойства, существуют производства, выпускающие вторичное полимерное сырье. Используется вторичное полимерное сырье на те же цели, что и первичное, однако его применение имеет ряд ограничений для использования в пищевой и медицинской промышленности.

Первичное полимерное сырье

Рассмотрим основные характеристики некоторых видов

Полипропилен – синтетический. Вещество белого цвета, выпускается в виде твердых гранул. Имеет много модификаций, среди которых гомополимер, вспенивающийся полипропилен, каучуковый и металлоценовый полипропилен. Ссылка на каталог:

Полистирол – термопластический синтетический полимер. Твердый, стеклообразный. Хороший диэлектрик, отличается устойчивостью к радиоактивным воздействиям, инертен к кислотам и щелочным растворам (за исключением ледяной уксусной и азотной кислоты). Гранулы полистирола прозрачны и имеют цилиндрическую форму. Используются для производства различной продукции методом экструзионного выдавливания. Ссылка на каталог:

Полиэтилен низкого давления – кристаллические малопрозрачные гранулы высокой плотности. Всем известны «шумные» пакеты из ПНД, способные выдержать высокие нагрузки. Путем экструзии из него выдувают очень тонкие пленки. Ссылка на каталог:

Полиэтилен высокого давления – гранулы белого цвета с красивой гладкой глянцевой поверхностью. Имеет второе название – полиэтилен низкой плотности. Рекомендован для использования в пищевой промышленности и для изготовления изделий медицинского назначения. Ссылка на каталог:

Поливинилхлорид (ПВХ) – сыпучий порошок с размером частиц до 200 мкм. Легко перерабатывается в твердые и мягкие пластики. Используется для производства труб, пленок, линолеума и других изделий технического назначения. Ссылка на каталог:

Линейный полиэтилен высокого давления – используют для выпуска тонких эластичных упаковочных пленок и пленок для ламинирования. По свойствам занимает среднее положение между полиэтиленом низкой и полиэтиленом высокой плотности. Работы по усовершенствованию его свойств не прекращаются. Ссылка на каталог:

Вторичное полимерное сырье

На многих предприятиях с целью экономии бракованная продукция из полимерных пластиков поступает на вторичную переработку, обеспечивая безотходное производство. Наряду с этим существует целое направление бизнеса по переработке отходов во вторичные гранулы полимера для продажи. Процесс многоступенчатый, весь цикл от сбора и закупки бытовых пластиковых отходов, сортировке, промывке, дробления и переработки в гранулы довольно трудоемкий. Однако готовая продукция по своим свойствам практически не отличается от первичного сырья и успешно используется во многих производствах. Выпуск вторичного полимерного сырья – важная и нужная отрасль народного хозяйства, позволяющая сэкономить огромные средства на отсутствии необходимости утилизации отработанных пластиков.

Что выбрать?

Вопрос какое сырье выбрать стоит перед каждым производителем. И если у вторичного сырья есть очевидный плюс – низкая цена. То не менее очевидны и его минусы:

  • Нестабильность свойств
  • Наличие посторонних примесей
  • Нет уверенности в марке полимера

Автоматически вытекают плюсы первичного полимерного сырья :

  • Стабильные свойства
  • Точно известна марка
  • Абсолютная чистота
  • Стабильные поставки

Пластмассами называют материалы, получаемые на основе природных или синтетических полимеров, которые на определенной стадии производства или переработки обладают высокой пластичностью.

Пластмассы широко применяются практически во всех отраслях народного хозяйства, что обусловлено наличием у различных видов пластмасс широкого спектра полезных свойств.

Пластмассы получаются синтезом (соединением) молекул простых органических и неорганических веществ (мономеров) с получением больших макромолекул – полимеров ("поли"– много).

В зависимости от поведения при нагревании пластмассы делятся на термопластичные и термореактивные.

Пластмассы, свойства и строение которых после нагревания и последующего охлаждения не изменяются, называются термопластичными – каждый раз при нагревании они размягчаются, а при охлаждении затвердевают, не изменяя своих свойств, поэтому могут перерабатываться многократно. Полимеры, которые при нагревании или охлаждении необратимо изменяют структуру, теряя способность плавиться и растворяться, называются термореактивными. Эти полимеры могут обрабатываться однократно.

Для придания пластмассе различных полезных свойств в ее состав вводят наполнители, пластификаторы и различные добавки.

Наполнителями служат органические или неорганические вещества в виде порошков (древесной или кварцевой муки, графита), волокон (бумажных, хлопчатобумажных, асбестовых, стеклянных) или листов (ткани, слюды, древесного шпона). Наполнители повышают прочность, теплостойкость, износостойкость и другие свойства пластмасс.

Пластификаторами называют вещества, вводимые в состав пластмасс с целью повышения их пластичности и эластичности.

К добавкам откосятся вещества, замедляющие разрушение пластмасс при воздействии тепла, света и других факторов. Для изменения цвета пластмассы в нее добавляют красители.

По происхождению пластмассы делятся на природные и синтетические. К природным полимерам относятся материалы, созданные на основе целлюлозы (продукта переработки древесины и хлопка) – целлофан, целлулоид, ацетатное волокно, нитролаки, кинопленка и др.

Экономически наиболее эффективными являются синтетические пластмассы, получаемые полимеризацией или поликонденсацией.

Полимеризацией называется процесс образования высокомолекулярных соединений – полимеров, при котором макромолекулы образуются путем последовательного соединения молекул низкомолекулярного вещества – мономера, при этом не происходит образование каких-либо побочных продуктов.

Поликонденсацией называется процесс образования высокомолекулярных соединений не менее чем из двух мономеров, проходящий с выделением низкомолекулярных продуктов (низкомолекулярных веществ – воды, спирта и т. д.).



Широкое применение пластмасс определяется их ценными физическими и химическими свойствами. Для органических полимеров и пластмасс на их основе характерна низкая плотность, что определяет их широкое использование в авиа-, авто-, ракето- и судостроении.

Многие пластмассы отличаются высокой химической стойкостью. Они не подвержены электрохимической коррозии, на них не действуют слабые кислоты и щелочи. Некоторые из пластмасс (фторопласты, поливинилхлориды, полиолефины и др.) находят применение в химическом машиностроении, в ракетостроении, служат для защиты металлов от коррозии. Большинство пластмасс безвредно в санитарном отношении.

Пластмассы обладают высокими диэлектрическими свойствами и широко применяются в электро-, радиотехнике и радиоэлектронике.

Пластмассы имеют низкую теплопроводность (в 70–220 раз ниже теплопроводности стали), что позволяет их использовать в качестве теплоизоляторов.

Механические свойства пластмасс находятся в широком диапазоне. В зависимости от вида они могут быть твердыми и прочными или же гибкими и упругими. Ряд видов пластмасс по механической прочности превосходит чугун и бронзу.

Многие пластмассы обладают высокой морозостойкостью и теплостойкостью (например, фторопласт может применяться при температурах от –269 до +260°С).

Хорошие антифрикционные свойства одних видов пластмасс позволяют применять их для изготовления подшипников скольжения, высокий коэффициент трения других видов позволяет их использовать для изготовления деталей тормозящих устройств.

Пластмассы обладают хорошей восприимчивостью к окрашиванию. Некоторые пластмассы могут быть изготовлены прозрачными, не уступающими по своим оптическим свойствам стеклу. При этом пластмассы, в отличие от стекла, пропускают ультрафиолетовые лучи.

Пластмассы обладают хорошими технологическими свойствами – при обработке хорошо льются, прессуются, обрабатываются резанием. Изделия из пластмасс изготавливают способами безотходной технологии (без снятия стружки) – литьем, прессованием, формованием с применением невысоких давлений в вакууме.

Недостатком пластмасс являются: малая прочность, жесткость и твердость, большая ползучесть, особенно у термопластов, низкая теплостойкость (для большинства пластмасс температура составляет от -60° до +200°), старение, плохая теплопроводность. Однако положительные свойства пластмасс несравнимо выше их недостатков, поэтому их применение очень высокое и непрерывно растет. Рассмотрим наиболее часто применяемые виды пластмасс.

Основные виды термопластичных пластмасс, их свойства и применение

Из полимеризационных пластмасс наиболее широко используются: полиэтилен, полипропилен, полистирол, винипласт, фторопласт и полиакрилат.

Полиэтилен. Полиэтилен является продуктом полимеризации этилена. Его получают при крекинге нефти, из коксового газа, из этилового спирта.

Полиэтилен выпускается в виде пленок толщиной 0,03–0,3 мм, шириной 1400 мм и длиной до 300 м, а также в виде листов толщиной 1–6 мм и шириной до 1400 мм. Полиэтилен обладает исключительно высокими диэлектрическими свойствами, поэтому находит широкое применение при изготовлении кабельной изоляции, деталей для радиоаппаратуры, телевизионных и телеграфных установок. Вследствие водонепроницаемости и химической стойкости (при температурах до 60°С он стоек против соляной, серной, азотной кислот, растворов щелочей и многих органических растворителей) полиэтилен применяют для изготовления деталей химической аппаратуры, нефте- и газопроводов, цистерн, им выстилают каналы оросительных сетей. Полиэтилен нетоксичен, поэтому из него изготавливают пленку для хранения пищевых продуктов, применяют для изготовления предметов домашнего обихода. Так как полиэтилен прозрачен, то его применяют в качестве заменителя стекла, в сельском хозяйстве полиэтиленовой пленкой покрывают парники. Из полиэтилена изготавливают крышки подшипников, детали вентиляторов и насосов, гайки, шайбы, полые изделия вместимостью до 200 л, тару для хранения и транспортировки кислот и щелочей.

Полипропилен является производным этилена. По сравнению с полиэтиленом полипропилен имеет более высокую механическую прочность и жесткость, большую теплостойкость и меньшую склонность к старению. Недостатком полипропилена является его невысокая морозостойкость.

Полипропилен применяют для изготовления антикоррозионного покрытия резервуаров, труб и арматуры трубопроводов, электроизоляторов, а также для изготовления деталей, применяемых при работе в агрессивных средах. Из полипропилена изготавливают корпуса автомобилей и аккумуляторов, прокладки, трубы, фланцы, водонапорную арматуру, пленки, пленочные покрытия бумаги и картона, корпуса воздушных фильтров, конденсаторы, зубчатые и червячные колеса, ролики, подшипники скольжения, фильтры масляных и воздушных систем, уплотнения, детали приборов и автоматов точной механики, кулачковые механизмы, детали телевизоров, магнитофонов, холодильников, стиральных машин, изоляцию проводов и кабелей и т.д. Полипропилен обладает хорошими технологи-ческими свойствами – способностью к литью, экструзии, прессованию, сварке и обработке резанием.

Отходы при производстве полипропилена и отработавшие изделия из него используют для повторной переработки.

Полистирол – продукт полимеризации стирола. Твердый, жесткий, бесцветный, прозрачный полимер, водостоек, обладает прекрасными диэлектрическими свойствами, химически инертен, легко окрашивается в различные цвета. Недостатками полистирола являются его повышенная хрупкость при ударных нагрузках, склонность к старению, невысокая тепло- и морозостойкость.

Полистирол перерабатывается в изделия литьем под давлением, экструзией. Его применяют для изготовления деталей радио- и электроаппаратуры, предметов домашнего обихода, детских игрушек, трубок для изоляции проводов, пленок для изоляции в электрических кабелях и конденсаторах, открытых емкостей (лотков, тарелок, подносов), прокладок, втулок, светофильтров, крупногабаритных изделий радиотехники (корпусов транзисторных приемников), деталей электропылесосов, мебельной фурнитуры, конструкционных изделий с антистатическими свойствами. Ударопрочным полистиролом облицовывают пассажирские вагоны, салоны автобусов и самолетов. Из него изготавливают крупногабаритные детали холодильников, корпуса радиоприемников, телефонных аппаратов и т. д.

Поливинилхлоридные пластмассы. Пластмассы на основе поливинилхлорида (полихлорвинил или сокращенно ПХВ) имеют хорошие электроизоляционные свойства, химически стойки, не поддерживают горения, атмосферо-, водо-, масло- и бензостойки.

Обработкой порошкового ПХВ получают винипласт в виде пленок, листов, труб, стержней. Винипластовые детали хорошо механически обрабатываются и хорошо свариваются. Из винипласта изготавливают трубы для транспортировки воды, агрессивных жидкостей и газов, коррозионно-стойкие емкости, защитные покрытия для электропроводки, детали вентиляционных установок, теплообменников, шланги вакуум-проводов, защитные покрытия для металлических емкостей, изоляцию проводов и кабелей. Поливинилхлорид используют для получения пенопластов, линолеума, искусственной кожи, объемной тары, товаров бытовой химии, вибропоглощающих материалов в машино-строении и на всех видах транспорта, водо-, бензо- и антифризостойких трубок, прокладок и т.д.

Фторопласты – производные этилена, где все атомы водорода заменены галогенами. Наиболее широкое распространение получил фторопласт-4 (тефлон), или политетрафторэтилен.

Фторопласт-4 в изделиях представляет собой белое вещество со скользкой, не смачивающейся водой поверхностью. Он имеет исключительно высокие диэлектрические свойства, по химической стойкости превосходит все известные материалы, включая благородные металлы, может длительно выдерживать температуры до 250ºС. Пленка из него не становится хрупкой даже в среде жидкого гелия. Он стоек к воздействию минеральных и органических щелочей, кислот, органических растворителей, не набухает в воде, не смачивается жидкостями и вязкотекучими средами пищевых производств (тестом, патокой, вареньем и т.д.). При непосредственном контакте не оказывает влияния на организм человека, разрушается только под действием расплавленных щелочных металлов. Фто-ропласт-4 имеет низкий коэффициент трения и применяется для изготовления подшипников скольжения без смазки. Фторопласты широко применяются в электро- и радиотехнической промышленности, а также для изготовления химически стойких труб, кранов, мембран, насосов, подшипников, деталей медицинской техники, коррозионно-стойких конструкций, тепло- и морозостойких деталей (втулок, пластин, дисков, прокладок, сальников, клапанов), для облицовки внутренних поверхностей различных криогенных емкостей.

Полиакрилаты. Наиболее известным представителем этой группы является органическое стекло (оргстекло). Оно термопластично, достаточно прочно, легче стекла, обладает высокой прозрачностью и пропускает ультрафиолетовые лучи, имеет высокий коэффициент преломления. Его применяют для изготовления оптических стекол, из него делают окна самолетов и кораблей, предметы домашнего обихода. Недостаток – низкая поверхностная твердость.

Полиамиды включают в себя такие известные пластмассы, как нейлон, капрон и др. Их применяют для изготовления зубчатых колес и др. деталей машин – получают методом литья под давлением, для электроизоляции проводов – путем нанесения на них расплавленной смолы, для изготовления волокна – при продавливании смолы через фильеры, для изготовления пленки и клея. Волокна из полиамидов используют для корда автопокрышек, изготовления буксировочных канатов,

Для производства чулочно-носочных изделий и т.д. Полиамиды имеют низкий коэффициент трения и могут использоваться в качестве подшипников.

Полиуретаны характеризуются высокой упругостью, износостойкостью, низким коэффициентом трения. Их используют для изготовления изоляции, фильтровальных и парашютных тканей, применяют для получения пенопластов, каучуков, пленок антикоррозионных покрытий.

Основные виды термореактивных пластмасс, их свойства и применение

Основу термореактивных пластмасс (реактопластов) составляет связующее вещество – химически затвердевающая термореактивная смола. Кроме того, в состав реактопластов входят наполнители, пластификаторы, отвердители, ускорители или замедлители, растворители. Наполнителями, определяющими структурную основу пластмасс, могут быть порошковые, волокнистые и гибкие листовые материалы. Наиболее известными являются слоистые пластики, представляющие собой композиции из чередующихся слоев связующей смолы и листового наполнителя. В зависимости от вида наполнителя слоистые пластики получают свое наименование: гетинакс (наполнитель – бумага), текстолит (наполнитель – хлопчатобумажная ткань), асбо-текстолит (наполнитель – асбестовая ткань), стеклотекстолит (наполнитель – стеклянная ткань), древеснослоистые пластики – ДСП (наполнитель – древесный шпон).

Слоистые наполнители пропитывают смолой, сушат и режут по размеру. Из готовых листов в этажных прессах горячим способом прессуют плиты, а в пресс-формах – иные заготовки или детали.

Гетинакс применяют в электро- и радиотехнике в листах и плитах для изготовления панелей, печатных плат, электроизоляторов, изолирующих шайб, прокладок, а также в виде труб и цилиндров в трансформаторах.

Текстолит применяется для изготовления зубчатых колес, вкладышей подшипников и, так же как гетинакс, для изготовления электроизоляторов и печатных плат. В сравнении с гетинаксом он прочнее и устойчив при нагревании до 130°С.

Асботекстолит отличается теплостойкостью и хорошими фрикционными свойствами. Его применяют для изготовления трущихся деталей дисков сцепления и тормозных колодок.

Стеклотекстолит исключительно прочен и отличный электроизолятор.

При изготовлении поро- и пенопластов добавляют газообразователи – вещества, которые при нагреве разлагаются и выделяют большое количество газов, вспенивающих смолу.

Нашу цивилизацию можно назвать цивилизацией пластика: разнообразные виды пластмасс и полимерных материалов можно встретить буквально повсюду.

Однако обычный человек вряд ли хорошо представляет себе, что такое пластик и из чего его делают.

Что такое пластик?

В настоящее время пластиками, или пластмассами, называют целую группу материалов искусственного (синтетического) происхождения. Их производят путём цепочки химических реакций из органического сырья, преимущественно из природного газа и тяжёлых фракций нефти. Пластики представляют собой органические вещества с длинными полимерными молекулами, которые состоят из соединённых между собой молекул более простых веществ.

Изменяя условия полимеризации, химики получают пластики с нужными свойствами: мягкие или твёрдые, прозрачные или непрозрачные и т.д. Пластики сегодня используются буквально во всех сферах жизни, от производства компьютерной техники до ухода за маленькими детьми.

Как были изобретены пластмассы?

Первый в мире пластик был изготовлен в английском городе Бирмингем специалистом-металлургом А. Парксом. Это случилось в 1855 году: изучая свойства целлюлозы, изобретатель обработал её азотной кислотой, благодаря чему запустил процесс полимеризации, получив нитроцеллюлозу. Созданное им вещество изобретатель назвал собственным именем – паркезин. Паркс открыл собственную компанию по производству паркезина, который вскоре стали называть искусственной слоновой костью. Однако качество пластика было низким, и компания вскоре разорилась.

В дальнейшем технология была усовершенствована, и выпуск пластика продолжил Дж.У. Хайт, который назвал свой материал целлулоидом. Из него изготавливались самые разные товары, от воротничков, которые не нуждались в стирке, до бильярдных шаров.

В 1899 году был изобретён полиэтилен, и интерес к возможностям органической химии многократно вырос. Но до середины ХХ века пластики занимали довольно узкую нишу рынка, и только создание технологии производства ПВХ позволило изготавливать из них широчайший спектр бытовых и промышленных изделий.

Разновидности пластиков

В настоящее время промышленностью выпускается и используется множество разновидностей пластиков.

По своему составу пластмассы подразделяются на:

— листовые термопластические массы – оргстекло, винилпласты, состоящие из смол, пластификатора и стабилизатора;


— слоистые пластики, армированные одним или несколькими слоями бумаги, стеклоткани и т.д.;

— волокниты – пластики, армированные стекловолокном, асбестовым волокном, хлопчатобумажным и т.д.;

— литьевые массы – пластики, не имеющие в составе других компонентов, кроме полимерных соединений;

— пресс-порошки – пластики с порошкообразными добавками.

По типу полимерного связующего пластики подразделяются на:

— фенопласты, которые изготавливаются из фенолформальдегидных смол;

— аминопласты, изготавливаемые из меламинформальдегидных и мочевиноформальдегидных смол;

— эпоксипласты, использующие в качестве связующего эпоксидные смолы.

По внутренней структуре и свойствам пластики делятся на две большие группы:

— термопласты, которые при нагреве плавятся, но после охлаждения сохраняют свою первоначальную структуру;

— реактопласты, с исходной структурой линейного типа, при отверждении приобретающие сетчатую структуру, но при повторном нагреве полностью теряющие свои свойства.

Термопласты могут использоваться неоднократно, для этого их достаточно измельчить и расплавить. Реактопласты по рабочим качествам, как правило, несколько лучше термопластов, но при сильном нагреве их молекулярная структура разрушается и в дальнейшем не восстанавливается.

Из чего делают пластики?

Исходным сырьём для подавляющего большинства видов пластиков служат уголь, природный газ и нефть. Из них путём химических реакций выделяют простые (низкомолекулярные) газообразные вещества – этилен, бензол, фенол, ацетилен и др., которые затем в ходе реакций полимеризации, поликонденсации и полиприсоединения превращаются в синтетические полимеры. Превосходные свойства полимеров объясняются наличием высокомолекулярных связей с большим числом исходных (первичных) молекул.


Некоторые этапы производства полимеров представляют собой сложные и чрезвычайно опасные для окружающей среды процессы, поэтому производство пластиков становится доступным лишь на высоком технологическом уровне. При этом конечные продукты, т.е. пластмассы, как правило, абсолютно нейтральны и не оказывают никакого негативного воздействия на здоровье людей.


Top