Неравенства с параметром единственное решение. §2. Квадратные уравнения и неравенства с параметром

Тип задания: 18

Условие

При каких значениях параметра a неравенство

\log_{5}(4+a+(1+5a^{2}-\cos^{2}x) \cdot \sin x - a \cos 2x) \leq 1 выполняется при всех значениях x ?

Показать решение

Решение

Данное неравенство равносильно двойному неравенству 0 < 4+a+(5a^{2}+\sin^{2}x) \sin x+ a(2 \sin^{2}x-1) \leq 5 .

Пусть \sin x=t , тогда получим неравенство:

4 < t^{3}+2at^{2}+5a^{2}t \leq 1 \: (*) , которое должно выполняться при всех значениях -1 \leq t \leq 1 . Если a=0 , то неравенство (*) выполняется для любого t\in [-1;1] .

Пусть a \neq 0 . Функция f(t)=t^{3}+2at^{2}+5a^{2}t возрастает на промежутке [-1;1] , так как производная f"(t)=3t^{2}+4at+5a^{2} > 0 при всех значениях t \in \mathbb{R} и a \neq 0 (дискриминант D < 0 и старший коэффициент больше нуля).

Неравенство (*) будет выполняться для t \in [-1;1] при условиях

\begin{cases} f(-1) > -4, \\ f(1) \leq 1, \\ a \neq 0; \end{cases}\: \Leftrightarrow \begin{cases} -1+2a-5a^{2} > -4, \\ 1+2a+5a^{2} \leq 1, \\ a \neq 0; \end{cases}\: \Leftrightarrow \begin{cases} 5a^{2}-2a-3 < 0, \\ 5a^{2}+2a \leq 0, \\ a \neq 0; \end{cases}\: \Leftrightarrow -\frac{2}{5} \leq a < 0 .

Итак, условие выполняется при -\frac{2}{5} \leq a \leq 0 .

Ответ

\left [ -\frac{2}{5}; 0 \right ]

Источник: «Математика. Подготовка к ЕГЭ-2016. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 18
Тема: Неравенства с параметром

Условие

Найдите все значения параметра a , при каждом из которых неравенство

x^2+3|x-a|-7x\leqslant -2a

имеет единственное решение.

Показать решение

Решение

Неравенство равносильно совокупности систем неравенств

\left[\!\!\begin{array}{l} \begin{cases} x \geqslant a, \\ x^2+3x-3a-7x+2a\leqslant0; \end{cases} \\ \begin{cases}x \left[\!\!\begin{array}{l} \begin{cases} x \geqslant a, \\ x^2-4x-a\leqslant0; \end{cases} \\ \begin{cases}x \left[\!\!\begin{array}{l} \begin{cases} a \leqslant x, \\ a\geqslant x^2-4x; \end{cases} \\ \begin{cases}a>x, \\ a\leqslant -\frac{x^2}{5}+2x. \end{cases}\end{array}\right.

В системе координат Oxa построим графики функций a=x, a=x^2-4x, a=-\frac{x^2}{5}+2x.

Полученной совокупности удовлетворяют точки, заключенные между графиками функций a=x^2-4x, a=-\frac{x^2}{5}+2x на промежутке x\in (заштрихованная область).

По графику определяем: исходное неравенство имеет единственное решение при a=-4 и a=5 , так как в заштрихованной области будет единственная точка с ординатой a , равной -4 и равной 5.

Государственное бюджетное общеобразовательное учреждение

Самарской области средняя общеобразовательная

школа № 2 им. В. Маскина ж.-д. ст. Клявлино

муниципального района Клявлинский

Самарской области

« Уравнения

и

неравенства

с параметрами»

учебное пособие

Клявлино

Учебное пособие

« Уравнения и неравенства с параметрами» для учащихся 10 –11 классов

данное пособие является приложением к программе элективного курса «Уравнения и неравенства с параметрами», которая прошла внешнюю экспертизу (научно-методическим экспертным советом министерства образования и науки Самарской области от 19 декабря 2008 года бала рекомендована к использованию в образовательных учреждениях Самарской области)

Авторы

Ромаданова Ирина Владимировна

учитель математики МОУ Клявлинской средней общеобразовательной

школы № 2 им. В.Маскина Клявлинского района Самарской области

Сербаева Ирина Алексеевна

Введение……………………………………………………………3-4

Линейные уравнения и неравенства с параметрами……………..4-7

Квадратные уравнения и неравенства с параметрами……………7-9

Дробно- рациональные уравнения с параметрами……………..10-11

Иррациональные уравнения и неравенства с параметрами……11-13

Тригонометрические уравнения и неравенства с параметрами.14-15

Показательные уравнения и неравенства с параметрами………16-17

Логарифмические уравнения и неравенства с параметрами…...16-18

Задачи ЕГЭ………………………………………………………...18-20

Задания для самостоятельной работы…………………………...21-28

Введение.

Уравнения и неравенства с параметрами.

Если в уравнении или неравенстве некоторые коэффициенты заданы не конкретными числовыми значениями, а обозначены буквами, то они называются параметрами, а само уравнение или неравенство параметрическим.

Для того, чтобы решить уравнение или неравенство с параметрами необходимо:

    Выделить особое значение - это то значение параметра, в котором или при переходе через которое меняется решение уравнения или неравенства.

    Определить допустимые значения – это значения параметра, при которых уравнение или неравенство имеет смысл.

Решить уравнение или неравенство с параметрами означает:

1) определить, при каких значениях параметров существуют решения;

2) для каждой допустимой системы значений параметров найти соответствующее множество решений.

Решить уравнение с параметром можно следующими методами: аналитическим или графическим.

Аналитический метод предполагает задачу исследования уравнения рассмотрением нескольких случаев, ни один из которых нельзя упустить.

Решение уравнения и неравенства с параметрами каждого вида аналитическим методом предполагает подробный анализ ситуации и последовательное исследование, в ходе которого возникает необходимость «аккуратного обращения» с параметром.

Графический метод предполагает построение графика уравнения, по которому можно определить, как влияет соответственно, на решение уравнения изменение параметра. График подчас позволяет аналитически сформулировать необходимые и достаточные условия для решения поставленной задач. Графический метод решения особенно эффективен тогда, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра и обладает несомненным преимуществом увидеть это наглядно.

§ 1. Линейные уравнения и неравенства.

Линейное уравнение а x = b , записанное в общем виде, можно рассматривать как уравнение с параметрами, где x – неизвестное, a , b – параметры. Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра a является значение а = 0.

b = 0 является особым значением параметра b .

При b ¹ 0 уравнение решений не имеет.

При b = 0 уравнение примет вид: 0х = 0 . Решением данного уравнения является любое действительное число.

Неравенства вида ах > b и ax < b (а ≠ 0) называются линейными неравенствами. Множество решений неравенства ах > b – промежуток

(; +), если a > 0 , и (-;) , если а < 0 . Аналогично для неравенства

ах < b множество решений – промежуток (-;), если a > 0, и (; +), если а < 0.

Пример 1. Решить уравнение ах = 5

Решение : Это линейное уравнение.

Если а = 0 , то уравнение 0 × х = 5 решения не имеет.

Если а ¹ 0, х = - решение уравнения.

Ответ : при а ¹ 0, х=

при а = 0 решения нет.

Пример 2. Решить уравнение ах – 6 = 2а – 3х.

Решение: Это линейное уравнение, ах – 6 = 2а – 3х (1)

ах + 3х = 2а +6

Переписав уравнение в виде (а+3)х = 2(а+3) , рассмотрим два случая:

а= -3 и а ¹ -3.

Если а= -3 , то любое действительное число х является корнем уравнения (1). Если же а ¹ -3 , уравнение (1) имеет единственный корень х = 2.

Ответ: При а = -3, х R ; при а ¹ -3, х = 2.

Пример 3. При каких значениях параметра а среди корней уравнения

2ах – 4х – а 2 + 4а – 4 = 0 есть корни больше 1 ?

Решение : Решим уравнение 2ах – 4х – а 2 + 4а – 4 = 0 – линейное уравнение

2(а - 2) х = а 2 – 4а +4

2(а - 2) х = (а – 2) 2

При а = 2 решением уравнения 0х = 0 будет любое число, в том числе и большее 1.

При а ¹ 2 х =
.
По условию х > 1 , то есть
>1, а > 4.

Ответ: При а {2} U (4;∞).

Пример 4 . Для каждого значения параметра а найти количество корней уравнения ах=8.

Решение. ах = 8 – линейное уравнение.

y = a – семейство горизонтальных прямых;

y = - графиком является гипербола. Построим графики этих функций.

Ответ: Если а =0 , то уравнение решений не имеет. Если а ≠ 0 , то уравнение имеет одно решение.

Пример 5 . С помощью графиков выяснить, сколько корней имеет уравнение:

|х| = ах – 1.

y =| х | ,

y = ах – 1 – графиком является прямая, проходящая через точку (0;-1).

Построим графики этих функций.

Ответ:При|а|>1 - один корень

при | а| ≤1 – уравнение корней не имеет.

Пример 6 . Решить неравенство ах + 4 > 2х + а 2

Решение : ах + 4 > 2х + а 2
(а – 2) х >
а 2 – 4. Рассмотрим три случая.


Ответ. х > а + 2 при а > 2; х <а + 2, при а < 2; при а=2 решений нет.

§ 2. Квадратные уравнения и неравенства

Квадратное уравнение – это уравнение вида ах ² + b х + с = 0 , где а≠ 0,

а, b , с – параметры.

Для решения квадратных уравнений с параметром можно использовать стандартные способы решения на применение следующих формул:

1 ) дискриминанта квадратного уравнения: D = b ² - 4 ac , (
²-
ас)

2) формул корней квадратного уравнения: х 1 =
, х
2 =
,

1,2 =
)

Квадратными называются неравенства вида

a х 2 + b х + с > 0, a х 2 + b х + с< 0, (1), (2)

a х 2 + b х + с ≥ 0, a х 2 + b х + с ≤ 0, (3), (4)

Множество решений неравенства (3) получается объединением множеств решений неравенства (1) и уравнения , a х 2 + b х + с=0. Аналогично находится множество решений неравенства (4).

Если дискриминант квадратного трехчлена a х 2 + b х + с меньше нуля, то при а >0 трехчлен положителен при всех х R .

Если квадратный трехчлен имеет корни (х 1 < х 2 ), то при а > 0 он положителен на множестве (-; х 2 )
2; +) и отрицателен на интервале

(х 1 ; х 2 ). Если а < 0, то трехчлен положителен на интервале (х 1 ; х 2 ) и отрицателен при всех х (-; х 1 )
2; +).

Пример 1. Решить уравнение ах² - 2 (а – 1)х – 4 = 0 .

Это квадратное уравнение

Решение : Особое значение а = 0.

    При а = 0 получим линейное уравнение 2х – 4 = 0 . Оно имеет единственный корень х = 2.

    При а ≠ 0. Найдем дискриминант.

D = (а-1)² + 4а = (а+1)²

Если а = -1, то D = 0 – один корень.

Найдем корень, подставив вместо а = -1.

-х² + 4х – 4= 0, то есть х² -4х + 4 = 0, находим, что х=2.

Если а ≠ - 1 , то D >0 . По формуле корней получим: х=
;

х 1 =2, х 2 = -.

Ответ: При а=0 и а= -1 уравнение имеет один корень х = 2; при а ≠ 0 и

а ≠ - 1 уравнение имеет два корня х 1 =2, х 2 =-.

Пример 2. Найдите количество корней данного уравнения х²-2х-8-а=0 в зависимости от значений параметра а.

Решение. Перепишем данное уравнение в виде х²-2х-8=а

y = х²-2х-8 - графиком является парабола;

y - семейство горизонтальных прямых.

Построим графики функций.

Ответ: При а <-9 , уравнение решений не имеет; при а=-9, уравнение имеет одно решение; при а>-9 , уравнение имеет два решения.

Пример 3. При каких а неравенство (а – 3) х 2 – 2ах + 3а – 6 >0 выполняется для всех значений х?

Решение. Квадратный трехчлен положителен при всех значениях х, если

а-3 > 0 и D <0, т.е. при а, удовлетворяющих системе неравенств






, откуда следует, что a > 6 .

Ответ. a > 6

§ 3. Дробно- рациональные уравнения с параметром,

сводящиеся к линейным

Процесс решения дробных уравнений выполняется по обычной схеме: дробное заменяется целым путем умножения обеих частей уравнения на общий знаменатель левой и правой его частей. После чего решается целое уравнение, исключая посторонние корни, то есть числа, которые обращают знаменатель в нуль.

В случае уравнений с параметром эта задача более сложная. Здесь, чтобы «исключить» посторонние корни, требуется найти значение параметра, обращающее общий знаменатель в нуль, то есть решить соответствующие уравнения относительно параметра.

Пример 1. Решить уравнение
= 0

Решение: Д.З: х +2 ≠ 0 , х ≠ -2

х – а = 0, х = а.

Ответ: При а ≠ - 2, х=а

При а = -2 корней нет.

Пример 2 . Решить уравнение
-
=
(1)

Это дробно- рациональное уравнение

Решение: Значение а = 0 является особым. При а = 0 уравнение теряет смысл и, следовательно, не имеет корней. Если а ≠ 0, то после преобразований уравнение примет вид: х² + 2 (1-а) х + а² - 2а – 3 = 0 (2) – квадратное уравнение.

Найдем дискриминант = (1 – а)² - (а² - 2а – 3)= 4, находим корни уравнения х 1 = а + 1, х 2 = а - 3.

При переходе от уравнения (1) к уравнению (2) расширилась область определения уравнения (1), что могло привести к появлению посторонних корней. Поэтому, необходима проверка.

П р о в е р к а. Исключим из найденных значений х такие, при которых

х 1 +1=0, х 1 +2=0, х 2 +1=0, х 2 +2=0.

Если х 1 +1=0, то есть (а+1) + 1= 0 , то а= -2. Таким образом,

при а= -2 , х 1 -

Если х 1 +2=0, то есть (а+1)+2=0, то а = - 3 . Таким образом, при а = - 3, х 1 - посторонний корень уравнения. (1).

Если х 2 +1=0, то есть (а – 3) + 1= 0 , то а = 2 . Таким образом, при а = 2 х 2 - посторонний корень уравнения (1).

Если х 2 +2=0, то есть (а – 3) + 2 = 0, то а=1 . Таким образом, при а = 1,

х 2 - посторонний корень уравнения (1).

В соответствии с этим при а = - 3 получаем х = - 3 – 3 = -6 ;

при а = - 2 х = -2 – 3= - 5;

при а = 1 х =1 + 1= 2;

при а = 2 х=2+1 = 3.

Можно записать ответ.

Ответ: 1) если а= -3, то х= -6; 2) если а= -2 , то х= -5 ; 3) если а= 0 , то корней нет; 4) если а= 1 , то х= 2; 5) если а=2 , то х=3 ; 6) если а ≠ -3, а ≠ -2, а ≠ 0, а≠ 1, а ≠ 2, то х 1 = а + 1, х 2 = а-3.

§4. Иррациональные уравнения и неравенства

Уравнения и неравенства, в которых переменная содержится под знаком корня, называется иррациональным.

Решение иррациональных уравнений сводится к переходу от иррационального к рациональному уравнению путем возведения в степень обеих частей уравнения или замены переменной. При возведении обеих частей уравнения в четную степень возможно появление посторонних корней. Поэтому при использовании указанного метода следует проверить все найденные корни подстановкой в исходное уравнение, учитывая при этом изменения значений параметра.

Уравнение вида
=g (x ) равносильно системе

Неравенство f (x ) ≥ 0 следует из уравнения f (x ) = g 2 (x ).

При решении иррациональных неравенств будем использовать следующие равносильные преобразования:

g(x)


≥g(x)

Пример 1. Решите уравнение
= х + 1 (3)

Это иррациональное уравнение

Решение: По определению арифметического корня уравнение (3) равносильно системе
.

При а = 2 первое уравнение системы имеет вид 0 х = 5 , то есть не имеет решений.

При а≠ 2 х=
.
Выясним, при каких значениях а найденное значение х удовлетворяет неравенству х ≥ -1:
≥ - 1,
≥ 0,

откуда а ≤ или а > 2.

Ответ: При а≤, а > 2 х=
,
при < а ≤ 2 уравнение решений не имеет.

Пример 2. Решить уравнение
= а
(приложение 4)

Решение. y =

y = а – семейство горизонтальных прямых.

Построим графики функций.

Ответ : при а<0 –решений нет;

при а 0 – одно решение.

Пример 3 . Решим неравенство (а+1)
<1.

Решение. О.Д.З. х ≤ 2 . Если а+1 ≤0 , то неравенство выполняется при всех допустимых значениях х . Если же а+1>0 , то

(а+1)
<1.

<



откуда х (2-
2

Ответ. х (- ;2 при а (-;-1, х (2-
2

при а (-1;+).

§ 5. Тригонометрические уравнения и неравенства.

Приведем формулы решений простейших тригонометрических уравнений:

Sinx = a
x= (-1)
n arcsin a+πn, n Z, ≤1, (1)

Cos x = a
x = ±arccos a + 2 πn, n Z, ≤1.
(2)

Если >1, то уравнения (1) и (2) решений не имеют.

tg x = a
x= arctg a + πn, n Z, aR

ctg x = a
x = arcctg a + πn, n Z, aR

Для каждого стандартного неравенства укажем множество решений:

1. sin x > a
arcsin a + 2 πn
Z,

при a <-1, xR ; при a ≥ 1, решений нет.

2. . sin x < a
π - arcsin a + 2 πnZ,

при а≤-1, решений нет; при а >1, xR

3. cos x > a
- arccos a + 2 πn < x < arccos a + 2 πn , n Z ,

при а<-1, xR ; при a ≥ 1 , решений нет.

4. cos x arccos a+ 2 πnZ,

при а≤-1 , решений нет; при a > 1, x R

5. tg x > a, arctg a + πnZ

6. tg x < a, -π/2 + πn Z

Пример1. Найти а , при которых данное уравнение имеет решение:

Cos 2 x + 2(a-2)cosx + a 2 – 4a – 5 =0.

Решение. Запишем уравнение в виде

с os 2 x + (2 a -4) cosx +(a – 5)(а+1) =0, решая его как квадратное, получаем cosx = 5-а и cosx = -а-1.

Уравнение cosx = 5- а имеет решения при условии -1≤ 5- а ≤1
4≤ а ≤ 6, а уравнение cosx = - а-1 при условии -1≤ -1- а ≤ 1
-2 ≤ а ≤0.

Ответ. а -2; 0
4; 6

Пример 2. При каких b найдется а такое, что неравенство
+
b > 0 выполняется при всех х ≠ πn , n Z .

Решение. Положим а = 0. Неравенство выполняется при b >0. Покажем теперь, что ни одно b ≤0 не удовлетворяет условиям задачи. Действительно, достаточно положить х = π /2, если а <0, и х = - π /2 при а ≥0.

Ответ. b> 0

§ 6. Показательные уравнения и неравенства

1. Уравнение h (x ) f ( x ) = h (x ) g ( x ) при h (x ) > 0 равносильно совокупности двух систем
и

2. В частном случае (h (x )= a ) уравнение а f (x ) = а g (x ) при а > 0, равносильно совокупности двух систем

и

3. Уравнение а f (x ) = b , где а > 0, a ≠1, b >0, равносильно уравнению

f (x )= log a b . Случай а =1 рассматриваем отдельно.

Решение простейших показательных неравенств основано на свойстве степени. Неравенство вида f (a x ) > 0 при помощи замены переменной t = a x сводится к решению системы неравенств
а затем к решению соответствующих простейших показательных неравенств.

При решении нестрого неравенства необходимо к множеству решений строгого неравенства присоединить корни соответствующего уравнения. Как и при решении уравнений во всех примерах, содержащих выражение а f (x ) , предполагаем а > 0. Случай а = 1 рассматриваем отдельно.

Пример 1 . При каких а уравнение 8 х =
имеет только положительные корни?

Решение. По свойству показательной функции с основанием, большим единицы, имеем х>0
8
х >1

>1

>0, откуда
a (1,5;4).

Ответ. a (1,5;4).

Пример 2. Решить неравенство a 2 ∙2 x > a

Решение . Рассмотрим три случая:

1. а< 0 . Так как левая часть неравенства положительна, а правая отрицательна, то неравенство выполняется для любых хR .

2. a =0. Решений нет.

3. а > 0 . a 2 ∙2 x > a
2 x >
x > - log 2 a

Ответ. хR при а > 0; решений нет при a =0; х (- log 2 a ; +) при а> 0 .

§ 7. Логарифмические уравнения и неравенства

Приведем некоторые эквивалентности, используемые при решении логарифмических уравнений и неравенств.

1. Уравнение log f (x ) g (x ) = log f (x ) h (x ) равносильно системе

В частности, если а >0, а ≠1, то

log a g (x)= log a h(x)

2. Уравнение log a g (x)=b
g (x)= a b ( а >0, a ≠ 1, g(x) >0).

3. Неравенство log f ( x ) g (x ) ≤ log f ( x ) h (x ) равносильно совокупности двух систем:
и

Если а, b – числа, а >0, а ≠1, то

log a f (x) ≤ b

log a f (x) > b

Пример 1. Решите уравнение

Решение . Найдем ОДЗ: х > 0, х ≠ а 4 , a > 0, а ≠ 1. Преобразуем уравнение

logх – 2 = 4 – log a x
logх + log a x – 6 = 0, откуда log a x = - 3

х = а -3 и log a x = 2
х = а 2 . Условие х = а 4
а – 3 = а 4 или а 2 = а 4 не выполняется на ОДЗ.

Ответ: х = а -3 , х = а 2 при а (0; 1)
(1; ).

Пример 2 . Найдите наибольшее значение а , при котором уравнение

2 log -
+ a = 0 имеет решения.

Решение. Выполним замену
= t и получим квадратное уравнение 2 t 2 – t + a = 0. Решая, найдем D = 1-8 a . Рассмотрим D ≥0, 1-8 а ≥0
а ≤.

При а = квадратное уравнение имеет корень t = >0.

Ответ. а =

Пример 3 . Решить неравенство log (x 2 – 2 x + a ) > - 3

Решение. Решим систему неравенств

Корни квадратных трехчленов х 1,2 = 1 ±
и х
3,4 = 1 ±
.

Критические значения параметра: а = 1 и а = 9.

Пусть Х 1 и Х 2 – множества решений первого и второго неравенств, тогда

Х 1
Х
2 = Х – решение исходного неравенства.

При 0< a <1 Х 1 = (- ;1 -
)
(1 +
; +), при
а > 1 Х 1 = (-;+).

При 0 < a < 9 Х 2 = (1 -
; 1 +
), при
а ≥9 Х 2 – решений нет.

Рассмотрим три случая:

1. 0< a ≤1 Х = (1 -
;1 -
)
(1 +
;1 +
).

2. 1 < a < 9 Х = (1 -
;1 +
).

3. a ≥ 9 Х – решений нет.

Задачи ЕГЭ

Высокий уровень С1, С2

Пример 1. Найдите все значения р , при которых уравнение

р ctg 2 x + 2sinx + p = 3 имеет хотя бы один корень.

Решение. Преобразуем уравнение

р ∙ (
- 1) + 2sinx + p = 3, sinx =t , t
, t 0.

- p + 2 t + p = 3, + 2 t = 3, 3 -2t = , 3t 2 – 2t 3 = p .

Пусть f (y ) = 3 t 2 – 2 t 3 . Найдем множество значений функции f (x ) на


. у
/ = 6 t – 6 t 2 , 6 t - 6 t 2 = 0, t 1 =0, t 2 = 1. f (-1) = 5, f (1) = 1.

При t
, E (f ) =
,

При t
, E (f ) =
, то есть при t


,
E (f ) =
.

Чтобы уравнение 3 t 2 – 2 t 3 = p (следовательно, и данное) имело хотя бы один корень необходимо и достаточно p E (f ), то есть p
.

Ответ.
.

Пример 2.

При каких значениях параметра а уравнение log
(4 x 2 – 4 a + a 2 +7) = 2 имеет ровно один корень?

Решение. Преобразуем уравнение в равносильное данному:

4x 2 – 4a + a 2 +7 = (х 2 + 2) 2 .

Отметим, что если некоторое число х является корнем полученного уравнения, то число – х также является корнем этого уравнения. По условию это не выполнимо, поэтому единственным корнем является число 0.

Найдем а .

4∙ 0 2 - 4a + a 2 +7 = (0 2 + 2) 2 ,

a 2 - 4a +7 = 4, a 2 - 4a +3 = 0, a 1 = 1, a 2 = 3.

Проверка.

1) a 1 = 1. Тогда уравнение имеет вид: log
(4 x 2 +4) =2. Решаем его

4x 2 + 4 = (х 2 + 2) 2 , 4x 2 + 4 = х 4 + 4x 2 + 4, х 4 = 0, х = 0 – единственный корень.

2) a 2 = 3. Уравнение имеет вид: log
(4 x 2 +4) =2
х = 0 – единственный корень.

Ответ. 1; 3

Высокий уровень С4, С5

Пример 3. Найдите все значения р, при которых уравнение

х 2 – (р + 3)х + 1= 0 имеет целые корни и эти корни являются решениями неравенства: х 3 – 7р х 2 + 2х 2 – 14 р х - 3х +21 р ≤ 0.

Решение. Пусть х 1, х 2 – целые корни уравнения х 2 – (р + 3)х + 1= 0. Тогда по формуле Виета справедливы равенства х 1 + х 2 = р + 3, х 1 ∙ х 2 = 1. Произведение двух целых чисел х 1 , х 2 может равняться единице только в двух случаях: х 1 = х 2 = 1 или х 1 = х 2 = - 1. Если х 1 = х 2 = 1, то р + 3 = 1+1 = 2
р = - 1; если х 1 = х 2 = - 1, то р + 3 = - 1 – 1 = - 2
р = - 5. Проверим являются ли корни уравнения х 2 – (р + 3)х + 1= 0 в описанных случаях решениями данного неравенства. Для случая р = - 1, х 1 = х 2 = 1 имеем

1 3 – 7 ∙ (- 1) ∙ 1 2 +2∙ 1 2 – 14 ∙ (- 1) ∙ 1 – 3 ∙ 1 + 21 ∙ (- 1) = 0 ≤ 0 – верно; для случая р = - 5, х 1 = х 2 = - 1 имеем (- 1) 3 – 7 ∙ (- 5) ∙ (-1) 2 + 2 ∙ (-1) 2 – 14 ∙ (-5) × (- 1) – 3 ∙ (- 1) + 21∙ (-5) = - 136 ≤ 0 – верно. Итак, условию задачи удовлетворяют только р = - 1 и р = - 5.

Ответ. р 1 = - 1 и р 2 = - 5.

Пример 4. Найдите все положительные значения параметра а , при которых число 1 принадлежит области определения функции

у = (а
- а
).

Решение неравенств с параметром.

Неравенства, которые имеют вид ax > b, ax < b, ax ≥ b, ax ≤ b, где a и b – действительные числа или выражения, зависящие от параметров, а x – неизвестная величина, называются линейными неравенствами .

Принципы решения линейных неравенств с параметром очень схожи с принципами решения линейных уравнений с параметром.

Пример 1.

Решить неравенство 5х – а > ax + 3.

Решение.

Для начала преобразуем исходное неравенство:

5х – ах > a + 3, вынесем за скобки х в левой части неравенства:

(5 – а)х > a + 3. Теперь рассмотрим возможные случаи для параметра а:

Если a > 5, то x < (а + 3) / (5 – а).

Если а = 5, то решений нет.

Если а < 5, то x > (а + 3) / (5 – а).

Данное решение и будет являться ответом неравенства.

Пример 2.

Решить неравенство х(а – 2) / (а – 1) – 2а/3 ≤ 2х – а при а ≠ 1.

Решение.

Преобразуем исходное неравенство:

х(а – 2) / (а – 1) – 2х ≤ 2а/3 – а;

Ах/(а – 1) ≤ -а/3. Домножим на (-1) обе части неравенства, получим:

ах/(а – 1) ≥ а/3. Исследуем возможные случаи для параметра а:

1 случай. Пусть a/(а – 1) > 0 или а € (-∞; 0)ᴗ(1; +∞). Тогда x ≥ (а – 1)/3.

2 случай. Пусть a/(а – 1) = 0, т.е. а = 0. Тогда x – любое действительное число.

3 случай. Пусть a/(а – 1) < 0 или а € (0; 1). Тогда x ≤ (а – 1)/3.

Ответ: х € [(а – 1)/3; +∞) при а € (-∞; 0)ᴗ(1; +∞);
х € [-∞; (а – 1)/3] при а € (0; 1);
х € R при а = 0.

Пример 3.

Решить неравенство |1 + x| ≤ аx относительно х.

Решение.

Из условия следует, что правая часть неравенства ах должна быть не отрицательна, т.е. ах ≥ 0. По правилу раскрытия модуля из неравенства |1 + x| ≤ аx имеем двойное неравенство

Ах ≤ 1 + x ≤ аx. Перепишем результат в виде системы:

{аx ≥ 1 + x;
{-ах ≤ 1 + x.

Преобразуем к виду:

{(а – 1)x ≥ 1;
{(а + 1)х ≥ -1.

Исследуем полученную систему на интервалах и в точках (рис. 1) :

При а ≤ -1 х € (-∞; 1/(а – 1)].

При -1 < а < 0 x € [-1/(а – 1); 1/(а – 1)].

При а = 0 x = -1.

При 0 < а ≤ 1 решений нет.

Графический метод решения неравенств

Построение графиков значительно упрощает решение уравнений, содержащих параметр. Использование графического метода при решении неравенств с параметром еще нагляднее и целесообразнее.

Графическое решение неравенств вида f(x) ≥ g(x) означает нахождение значений переменной х, при которых график функции f(x) лежит выше графика функции g(x). Для этого всегда необходимо найти точки пересечения графиков (если они существуют).

Пример 1.

Решить неравенство |x + 5| < bx.

Решение.

Строим графики функций у = |x + 5| и у = bx (рис. 2) . Решением неравенства будут те значения переменной х, при которых график функции у = |x + 5| будет находиться ниже графика функции у = bx.

На рисунке видно:

1) При b > 1 прямые пересекаются. Абсцисса точки пересечения графиков этих функций есть решение уравнения х + 5 = bx, откуда х = 5/(b – 1). График у = bx находится выше при х из интервала (5/(b – 1); +∞), значит это множество и есть решение неравенства.

2) Аналогично находим, что при -1 < b < 0 решением является х из интервала (-5/(b + 1); 5/(b – 1)).

3) При b ≤ -1 x € (-∞; 5/(b – 1)).

4) При 0 ≤ b ≤ 1 графики не пересекаются, а значит, и решений у неравенства нет.

Ответ: x € (-∞; 5/(b – 1)) при b ≤ -1;
x € (-5/(b + 1); 5/(b – 1)) при -1 < b < 0;
решений нет при 0 ≤ b ≤ 1; x € (5/(b – 1); +∞) при b > 1.

Пример 2.

Решить неравенство а(а + 1)х > (a + 1)(a + 4).

Решение.

1) Найдем «контрольные » значения для параметра а: а 1 = 0, а 2 = -1.

2) Решим данное неравенство на каждом подмножестве действительных чисел: (-∞; -1); {-1}; (-1; 0); {0}; (0; +∞).

a) a < -1, из данного неравенства следует, что х > (a + 4)/a;

b) a = -1, тогда данное неравенство примет вид 0·х > 0 – решений нет;

c) -1 < a < 0, из данного неравенства следует, что х < (a + 4)/a;

d) a = 0, тогда данное неравенство имеет вид 0 · х > 4 – решений нет;

e) a > 0, из данного неравенства следует, что х > (a + 4)/a.

Пример 3.

Решить неравенство |2 – |x|| < a – x.

Решение.

Строим график функции у = |2 – |x|| (рис. 3) и рассматриваем все возможные случаи расположения прямой у = -x + а.

Ответ: решений у неравенства нет при а ≤ -2;
x € (-∞; (а – 2)/2) при а € (-2; 2];
x € (-∞; (a + 2)/2) при a > 2.

При решении различных задач, уравнений и неравенств с параметрами открывается значительное число эвристических приемов, которые потом с успехом могут быть применены в любых других разделах математики.

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры. Именно поэтому, овладев методами решения задач с параметрами, вы успешно справитесь и с другими задачами.

Остались вопросы? Не знаете, как решать неравенства?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Многие задачи с параметром сводятся к исследованию квадратного трёхчлена, поэтому рассмотрим эти задачи подробнее.

I. При решении простейших задач бывает достаточно формулы для корней квадратного уравнения и теоремы Виета.

При каких значениях параметра a a множество решений неравенства $$x^2+ax-1

Поскольку коэффициент при x 2 x^2 положителен, решением неравенства является интервал между корнями в случае $$D > 0$$ и пустое множество, если D ≤ 0 D \leq 0 .

Находим дискриминант: D = a 2 + 4 D = a^2+4 ($$D>0$$ при всех a a). Тогда множество решений есть промежуток

x ∈ (- a - a 2 + 4 2 ; - a + a 2 + 4 2) x \in (\dfrac{-a-\sqrt{a^2+4}}{2}; \dfrac{-a+\sqrt{a^2+4}}{2}) . Требуется, чтобы длина этого промежутка была равна 5, т. е.

A + a 2 + 4 2 = - a - a 2 + 4 2 + 5 ⇔ a 2 + 4 = 5 ⇔ a = ± 21 \dfrac{-a+\sqrt{a^2+4}}{2} = \dfrac{-a-\sqrt{a^2+4}}{2} + 5 \Leftrightarrow \sqrt{a^2+4}=5 \Leftrightarrow a = \pm \sqrt{21} .

ОТВЕТ

A = ± 21 a = \pm \sqrt{21}

При каких значениях параметра p p уравнение x 2 + p 2 + 4 p · x + p - 1 x^2+\sqrt{p^2+4p}\cdot x +p-1 имеет корни, а сумма квадратов корней минимальна?

Сумму квадратов корней уравнения удобно выразить с помощью теоремы Виета:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = (- p 2 + 4 p) 2 - 2 (p - 1) = p 2 + 2 p + 2 x_1^2+x_2^2 = (x_1+x_2)^2-2x_1x_2=(-\sqrt{p^2+4p})^2-2(p-1) = p^2 +2p + 2 .

Но прежде, чем применять теорему Виета, обязательно нужно проверить, что уравнение имеет корни! Для этого вычисляем дискриминант: D = p 2 + 4 p - 4 (p - 1) = p 2 + 4 D = p^2+4p-4(p-1) = p^2+4 . Видим, что дискриминант положителен при любых допустимых значениях p p , т. е. при

p ∈ (- ∞ ; - 4 ] ∪ [ 0 ; + ∞)                           (5) p \in (-\infty; -4]\bigcup и пр.), в которых надо самостоятельно нарисовать чертёж и сделать соответствующие выводы.

Замечания. 1. Для уравнений и неравенств вида

$$ax^2 + bx + c = 0,\: ax^2 + bx + c > 0, \: ax^2 + bx + c надо отдельно рассматривать случай a = 0 a =0 . Тогда получится линейное уравнение (неравенство).

2. В большинстве задач важно учесть знак числа a a - от этого зависит направление ветвей параболы.

3. Заметим, что совокупность двух систем

$$\begin{cases} a > 0, \\ f(a) > 0 \end{cases} и \begin{cases} a

равносильна неравенству $$a f(a) > 0$$. Поэтому в условии 1 ° 1^{\circ} можно записать одну систему $$\begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}}

Аналогично можно упростить и другие условия:

$$2^{\circ} \Leftrightarrow \begin{cases} D>0, \\ a f(A) > 0, \\ x_{\text{в}} > A .\end{cases} \:\:\: 3^{\circ} \Leftrightarrow a f(A) 0, \\ a f(A) > 0, \\ a f(B) > 0, \\ A

Перейдём к примерам.

При каких a a уравнение (2 a - 2) x 2 + (a + 1) x + 1 = 0 (2a-2)x^2 + (a+1)x +1 = 0 имеет корни, и все они принадлежат интервалу (- 2 ; 0) (-2; 0) ?

1) Если 2 a - 2 = 0   (a = 1) 2a-2=0\:(a=1) , то уравнение принимает вид 2 x + 1 = 0 2x+1=0 . Это уравнение имеет единственный корень x = - 0,5 x=-0,5 , который принадлежит интервалу (- 2 ; 0) (-2; 0) . Значит, a = 1 a =1 удовлетворяет условию задачи.

2) Если 2 a - 2 ≠ 0 2a-2 \neq 0 , то уравнение квадратное. Находим дискриминант:

D = (a + 1) 2 - 4 (2 a - 2) = a 2 - 6 a + 9 = (a - 3) 2 D=(a+1)^2-4(2a-2)=a^2-6a+9=(a-3)^2 .

Поскольку дискриминант является полным квадратом, находим корни(как правило, вышеописанные приёмы с расположением корней удобно использовать, если формулы для корней громоздкие. Если дискриминант является полным квадратом и корни получаются “хорошими”, то проще решить задачу напрямую):

Для выполнения условий задачи требуется, чтобы выполнялось неравенство $$-2 \dfrac{3}{2}$$.

ОТВЕТ

A ∈ { 1 } ∪ (3 2 ; + ∞) a \in \{1\}\bigcup (\dfrac{3}{2}; +\infty) .

При каких значениях a a неравенство $$4^{\textrm{sin}\:x}-2\cdot (a-3) \cdot 2^{\textrm{sin}\:x} + a+3 > 0$$ выполняется для всех x x ?

Обозначим 2 sin   x = y 2^{\textrm{sin}\:x}=y . Поскольку - 1 ≤ sin   x ≤ 1 -1 \leq \textrm{sin}\:x \leq 1 , получаем, что 1 2 ≤ 2 sin   x ≤ 2 \dfrac{1}{2} \leq 2^{\textrm{sin}\:x} \leq 2 . Исходное неравенство принимает вид

$$y^2-2(a-3)y+(a+3) > 0$$

Данная задача эквивалентна следующей: «при каких a a неравенство $$y^2-2(a-3)y+(a+3) > 0$$ выполнено для всех y ∈ [ 1 2 ; 2 ] y \in [\dfrac{1}{2};2] ?»

График левой части этого неравенства - парабола с ветвями вверх. Требования задачи будут выполнены в двух случаях. 1) $$D

а) Это расположение параболы (корни находятся слева от отрезка [ 1 2 ; 2 ] [\dfrac{1}{2};2]) задаётся условиями (записываем и решаем систему):

$$\begin{cases} D \geq 0,\\ x_{\text{в}} 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 0 \end{cases} \Leftrightarrow \begin{cases} a \in (-\infty;1]\bigcup]6;+\infty),\\ a 0 \end{cases} \Leftrightarrow a \leq 1 $$.

б) Этот случай задаётся условием $$D

в) Аналогично случаю а) получаем систему:

$$\!\!\!\! \begin{cases} D \geq 0,\\ x_{\text{в}} > 2,\\ f(2) > 0 \end{cases} \Leftrightarrow \begin{cases} (a-3)^3-(a+3) \geq 0,\\ a-3 > 2,\\ 4 - 4(a-3) +a+3 > 0 \end{cases} \Leftrightarrow \begin{cases} a\in (-\infty; 1]\bigcup ?

1) Рассматриваем случай a = 0 a = 0 (тогда уравнение не квадратное). Уравнение принимает вид - 5 x - 6 = 0 -5x-6=0 . Корней на отрезке [ 0 ; 2 ] нет, поэтому a = 0 a = 0 не подходит.

2) Уравнение квадратное. Обозначим левую часть уравнения через f (x) f(x) . Уравнение имеет на отрезке [ 0 ; 2 ] ровно один корень в двух случаях.

А) Уравнение имеет единственный корень, и он принадлежит отрезку [ 0 ; 2 ] . Это возможно при D = 0 D = 0 . Вычисляем дискриминант:

D = (2 a - 5) 2 - 4 a (a - 6) = 4 a + 25 D = (2a-5)^2-4a(a-6) = 4a+25 .

Дискриминант обращается в ноль при a = - 25 4 a=-\dfrac{25}{4} . При этом исходное уравнение принимает вид - 25 4 x 2 - 35 2 x - 49 4 = 0 -\dfrac{25}{4}x^2-\dfrac{35}{2}x - \dfrac{49}{4} = 0 , откуда x = - 7 5 x = -\dfrac{7}{5} . Корней на отрезке [ 0 ; 2 ] нет, значит, этот случай не реализуется ни при каких значениях параметра a a .

Б) Уравнение имеет два корня ($$D>0 \Leftrightarrow a>-\dfrac{25}{4}$$), один из которых принадлежит отрезку [ 0 ; 2 ] , а другой - нет. Для выполнения этого условия необходимо и достаточно, чтобы либо (а) функция f (x) f(x) принимала на концах отрезка [ 0 ; 2 ] значения разных знаков - тогда корень лежит в интервале (0 ; 2) (0;2) (в качестве примера(можете самостоятельно рассмотреть и другие возможные расположения параболы) см. рис. 7), либо (б) в одном из концов отрезка обращалась в ноль - тогда корень лежит на одном из концов отрезка.

(а) Условие “числа f (0) f(0) и f (2) f(2) имеют разные знаки” равносильно неравенству $$f(0)\cdot f(2)

$$\left(a-6\right)\left(4a+2\left(2a-5\right)+\left(a-6\right)\right)

(б) Если f (0) = 0 f(0) = 0 , то a = 6 a=6 . Тогда уравнение принимает вид 6 x 2 + 7 x = 0 6x^2+7x=0 . Его корнями являются числа x = 0 x=0 и x = - 7 6 x=-\dfrac{7}{6} , т. е. на отрезке [ 0 ; 2 ] оно имеет ровно один корень.

Если f (2) = 0 f(2) = 0 , то a = 16 9 a=\dfrac{16}{9} . Тогда получаем 16 9 x 2 - 13 9 x - 38 9 = 0 \dfrac{16}{9}x^2 - \dfrac{13}{9}x - \dfrac{38}{9} = 0 , откуда x = 2 x=2 или x = - 19 16 x=-\dfrac{19}{16} , т. е. опять из двух корней только один принадлежит отрезку [ 0 ; 2 ] .

Значит, оба значения a = 6 a=6 и a = 16 9 a=\dfrac{16}{9} и удовлетворяют условию задачи(при f (2) = 0 f(2) = 0 или f (0) = 0 f(0) = 0 обязательно надо найти второй корень и посмотреть, находится ли он на отрезке [ 0 ; 2 ] ).

Объединяя результаты, получаем a ∈ [ 16 9 ; 6 ] a\in [\dfrac{16}{9}; 6] .

ОТВЕТ

16 9 ≤ a ≤ 6 \dfrac{16}{9} \leq a \leq 6

При каких значениях параметра a a уравнение | x 2 - 4 | x | + 3 | = a |x^2-4|x|+3| = a имеет ровно 8 решений?

Изобразим графики левой и правой частей на плоскости xOy.

Чтобы построить график левой части, сначала изображаем параболу y = x 2 - 4 x + 3 y = x^2-4x+3 . Затем отражаем все точки этой параболы, лежащие ниже оси абсцисс, относительно этой оси и получаем график функции y = | x 2 - 4 x + 3 | y=|x^2-4x+3| (рис. 8а). Далее отбрасываем все точки, лежащие слева от оси абсцисс, а оставшиеся точки отражаем относительно этой оси - получаем график функции y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| .

График правой части - это горизонтальная прямая y = a y=a . Уравнение имеет 8 решений, когда эта прямая пересекает график y = | x 2 - 4 | x | + 3 | y=|x^2-4|x|+3| в восьми точках. Несложно видеть, что это происходит при $$0ОТВЕТ

A ∈ (0 ; 1) a\in (0;1)

Найдите все значения параметра p p , при которых уравнение 4 x + 2 x + 2 + 7 = p - 4 - x - 2 · 2 1 - x 4^x+2^{x+2}+7=p-4^{-x}-2\cdot 2^{1-x} имеет хотя бы одно решение.

Перепишем уравнение в виде (4 x + 4 - x) + 4 · (2 x + 2 - x) = p - 7 (4^x+4^{-x})+4\cdot (2^x+2^{-x})=p-7 и сделаем замену 2 x + 2 - x = t 2^x+2^{-x}=t . Возводя обе части последнего равенства в квадрат, получаем, что t 2 = (2 x + 2 - x) 2 = 4 x + 2 + 4 - x t^2=(2^x+2^{-x})^2=4^x+2+4^{-x} , откуда 4 x + 4 - x = t 2 - 2 4^x+4^{-x} = t^2-2 . Уравнение принимает вид t 2 - 2 + 4 t = p - 7 ⇔ (t + 2) 2 = p - 1 t^2-2+4t = p-7 \Leftrightarrow (t+2)^2 = p-1 .

Найдём множество значений левой части уравнения. Поскольку(используем, что сумма двух взаимно обратных положительных чисел не меньше двух: a + 1 a ≥ 2 a+\dfrac{1}{a} \geq 2 при $$a>0$$ 0 (равенство возможно только при a = 1 a = 1). Это можно доказать, например, с помощью неравенства Коши: для положительных чисел среднее арифметическое не меньше среднего геометрического (a 1 + a 2 + . . . + a k k ≥ a 1 · a 2 · . . · a k k) (\dfrac{a_1+a_2+...+a_k}{k} \geq \sqrt[k]{a_1\cdot a_2\cdot .. \cdot a_k}) , причём равенство достигается только в случае a 1 = a 2 = . . . = a k a_1=a_2=...=a_k . Для двух положительных чисел это неравенство принимает вид a + b 2 ≥ a b \dfrac{a+b}{2} \geq \sqrt{ab} . Если сюда подставить b = 1 a b = \dfrac{1}{a} , то получится требуемое неравенство.) t ≥ 2 t \geq 2 , получаем, что левая часть уравнения принимает значения из промежутка [ 16 ; + ∞) }


Top