Тонкораспыленное модульное тушение. Эффективное пожаротушение тонкораспылённой водой высокого давления Автоматические системы пожаротушения тонкораспыленной водой



Автономные модули пожаротушения тонкораспыленной водой появились в процессе совершенствования спринклерных и дренчерных установок. Для обозначения модульного оборудования ТРВ применяется сокращение МУПТВ.

Автоматическое пожаротушение тонкораспыленной водой – спорное решение, наблюдается скептицизм по отношению к способу борьбы с возгораниями. Рекомендуют метод там, где установки тушения пожара необходимы, но невозможно использовать другие варианты.

Модульные системы пожаротушения тонкораспыленным ОТВ не эффективнее или , но экономнее из-за технологии тонко- мелкодисперсного распыления – в среднем 1 – 1,5 л на 1 кв. м.

Основные нормативные акты:

  1. Техрегламент – ;

Что такое модульные установки пожаротушения ТРВ

МУПТВ создают более совершенную завесу из воды с каплями меньше 150 мкм (п. 3.105 СП 5.13130.2009, НПБ 88-2001).

Модульный принцип: МУПТВ – компактная установка, не централизованная, со своей системой обнаружения возгорания. Оборудование включает самосрабатывающие элементы, но оно цельное – один самодостаточный, запускающийся автономно механизм.

Виды распыленной воды:

Модуль:

  1. единое (самодостаточное) устройство;
  2. одновременно хранит и подает ОТВ;
  3. сигнал к активации: с внешнего источника или самозапуск.
Модуль ТРВ с большей долей автономности:
  1. без участия пользователя происходит:
    • формирование и выброс тонкораспыленного тушащего состава;
    • активация, остановка системы.

Устройство и конструкция

МУПТВ выглядит как два баллона, соединенные патрубком. От узла тянется питающая магистраль, переходящая в распределительную систему труб с оросителями. Модуль располагается в защищаемой зоне или на небольшом отдалении.

Разновидности:

Описание

Формирование и выпуск тонкораспыленного тушащего средства

С отдельным ИХГ

Базовое исполнение модуля, используется чаще. С раздельным хранением пускового объема газа. Есть два баллона:

  • с ОТВ без давления;
  • с газом для вытеснения.

С одним закачным сосудом

Тушащая смесь в одной емкости с газом. Преимущества: минимальная инерционность. Можно объединять несколько модулей:

  • в систему с разводкой труб с распылителями;
  • без разводки: корпус с оросителем непосредственно над зоной.

Действие модуля тонкого распыления

Кратковременное

Непрерывное

Согласно ТД.

Циклическое

Заданными циклами: подача-пауза.

Инерционность

Малоинерционные

Задержка до 3 сек.

Средне инерционные

От 3 до 180 сек.

Другие разновидности

Давление

  • высокого (возможны насосы);
  • среднего;
  • низкого.

Варианты образования тушащего вещества

  • консистенция достигается механически;
  • в газожидкостную смесь дополнительно вводятся добавки.

Размещение

  • подвесная модульная установка;
  • настенная;
  • ранцевая (переносная).

Упрощенное отображение модульной схемы тонкого распыления: баллон с ИХГ для вытеснения – емкость с ОТВ – разводка труб с оросителями.

Подробная схема МУПТВ с незакачной емкостью:

  1. баллон с составом для тушения. Крепится:
    • перед разводкой с распылителями (чаще всего);
    • непосредственно в месте выпуска ОТВ;
  2. к модулю с огнетушащим веществом подсоединен через шланг (рукав высокого давления) баллон с газом-вытеснителем с запорно-пусковым устройством и элементами:
    • узел для заправки;
    • предохранительный клапан;
    • болт дренажный;
    • манометр;
  3. в месте соединения:
    • штуцер промежуточный;
    • формирователь газожидкостной смеси;
  4. трубная магистраль;
    • питающая;
    • распределительная – с узлом доставки, тройниками, оросителями;
  5. крепления:
    • хомуты;
    • кронштейны;
    • потолочные перекрытия;
  6. питающая труба с датчиком (индикатором) давления, дистанционно управляющим подачей;
  7. устройства:
    • слива;
    • контроля ОТВ;
    • штуцер для манометра;
  8. узел ручного пуска.
Типы водопитателя МУПТВ:
  1. баллон – ИХГ (газ сжиженный, сжатый);
  2. газогенератор;
  3. насосы;
  4. комбинированный.
Тушащий состав:
  1. вода:
    • простая;
    • дистиллированная;
  2. реагент (с фторными добавками, против замерзания);
  3. водоподготовка создает окончательную смесь:
    • жидкую;
    • газоводяную;
    • газожидкостную.

Принцип действия – срабатывания

Принцип работы и тушения модулем тонкого распыления:
  1. Датчики подают сигнал на ЗПУ сосуда с ИХГ;
  2. Вытесняющий газ (воздух, азот, двуокись углерода) поступает в формирователь газожидкостной среды и в сосуд с огнетушащим составом.
  3. Внутри емкости:
    1. Создается давление.
    2. Вода с добавками трансформируется в газожидкостную смесь.
  4. Смесь для тушения поступает через питательный водопровод в разветвленную по защищаемой зоне систему труб.
  5. Водой высокого давления через калибрирующие оросители создаются облака, завесы, экраны.

Задача МУПТВ – применение оросителей для создания объема водяной пыли в заданном направлении. Становятся доступными классы возгораний, которые не гасят обычной консистенцией.


Свойства ОТВ и принцип воздействия:

  1. создается движущийся туман (холодный пар);
  2. ТРВ формирует безвоздушную среду;
  3. мелкораспыленная смесь эффективно:
    • охлаждает;
    • вбирает тепло;
    • адсорбирует, осаждает вредные вещества, дым, газы;
    • разбавляет горящие жидкости;
  4. туман поддерживают до 15 мин., что исключает повторное возгорание.
Пожаротушение модулем тонкого распыления относят к поверхностному локальному, но на практике завеса охватывает значительные объемы, увеличивая КПД обычного количества ОТВ в несколько раз.

Область применения установок пожаротушения МУПТВ

Стандартная система пожаротушения тонкораспыленной водой модульного типа тушит классы возгораний и материалы:
  • A – твердые, горящие/тлеющие с доступом воздуха;
  • B – горючие жидкости.
При наличии спецсертификации оросителей и тушащего состава:
  • E – объекты с напряжением;
  • С – газы.
Не всегда МУПТВ рекомендуется для E, С. Такая возможность есть когда:
  1. оборудование можно переключать в режим ;
  2. ОТВ со спецдобавками.
Примеры, где установки применяются:
  1. Объекты с небольшой площадью, высотой и пожарной опасностью:
    • бытовые объекты: кладовые, чердаки, квартиры, частные дома;
    • небольшие офисы;
    • вагоны;
    • котельные;
    • гаражи;
    • кухни;
    • каюты, машинные отделения, коридоры судов;
    • архивы, музеи, поскольку ущерб от тонкораспыленной воды незначительный.
  2. В меньшей мере специалисты рекомендуют ТРВ для больших помещений, где более уместны мощные дренчерные/спринклерные, пенные установки:
    • склады;
    • объекты скопления людей;
    • подземные автостоянки;
    • торговые и офисные центры;
    • промышленные, производственные здания.
Приоритет для МУПТВ – небольшие помещения:
  1. где нет смысла или возможностей устанавливать основательную систему пожаротушения (стационарную);
  2. там, где проблемы с подачей воды (водоисточниками).

Что можно тушить ТРВ

Перечень материалов для пожаротушения тонкораспыленной водой:
  1. c полной эффективностью:
    • обычные твердые (дерево, уголь, текстиль);
    • сыпучие, волокнистые;
    • плавящиеся (каучук, резина, пластмассы);
    • растворимые (спирты, ацетон) и нерастворимые (топливо, масла), сжиженные твердые (парафин);
  2. менее эффективно:
    • электрооборудование с напряжением до 1000 В;
    • газообразные.

Что нельзя тушить ТРВ

Не применяют МУПТВ для объектов:
  1. горящие/тлеющие без воздуха;
  2. электроустановки с напряжением от 1000 В;
  3. вступающие в реакции с водой (с разбрызгиванием, повышением температуры):
    • металлосодержащие вещества, металлы: обычные, легкие, щелочные, щелочноземельные (взрывоопасны);
    • Li, азид Pb гидриды Zn, Mg, Al (выделяют газы);
    • термит, хлорид Ti, серная кислота (тепловыделение);
  4. не все МУПТВ применяют при категории С и E.

Расчет количества автоматического пожаротушения МУПТВ

Тонкораспыленное тушение проектируется по ТУ и инструкции производителя, где указано:
  1. охватываемая площадь;
  2. расход;
  3. продолжительность распыла;
  4. расстояние между оросителями;
  5. диаметр труб;
  6. интенсивность;
  7. обеспечиваемый напор.

Расчет учитывает НПБ 88-2001, ГОСТ Р 53288-2009 и зависит от класса пожароопасности, высоты потолков, складированных материалов. Для монтажа требуется разработка технических условий, поскольку многие нормы по ТРВ не конкретизированы в ППБ.

Пример : для помещения 1 кат. площадью 90 кв. м:

  1. интенсивность и расход установки:
    • от 0,04 л/сек./м. кв.;
    • для водяной завесы – 0,5 л/сек./ на 1 м ширины;
  2. продолжительность от 20 мин.;
  3. давление из расчета 0,07 МПа на каждый метр высоты;
  4. 10% запас.

Требования к размещению и эксплуатации МУПТВ

Правила:
  1. баллон с ОТВ и газом в непосредственной близости друг от друга (20 – 30 см) и на малом расстоянии от оросителей;
  2. рабочая смесь подается по одному трубопроводу;
  3. распылители и трубная магистраль выдерживают как минимум 15 мин. при +250C°;
  4. расстояние:
    • до потолка – 0,08 – 0,4 м;
    • между оросителями для помещения высотой до 6 м – до 3 м;
  5. рабочее давление:
    • максимальное – 13 МПа;
    • стандартное – 2,5 МПа;
    • высокое – от 10 МПа, для объемного тушения.

Техническое обслуживание и хранение МУПТВ

Обслуживание системы, основы ТО и эксплуатации:
  1. перезарядка и испытания – раз в 3 года;
  2. при потере давления больше 5%, потребуется ТО;
  3. ресурс срабатывания – от 5;
  4. температура хранения от +5 до +55C°, если ОТВ с незамерзающими добавками (ацетат калия), до -40C°;
  5. раз в месяц или квартал проверяют сопла и делают осмотр с проверкой манометром.

Тушение огня водой и на сегодняшний день остается одним из самых распространенных способов пожаротушения – 90% всех пожаров ликвидируют при помощи воды.

Популярность водяного ПТ – в свойствах огнетушащего состава, ведь вода – это наиболее безопасное, надежное и дешевое ОТВ из всех используемых в настоящее время.

Если рассматривать традиционные водяные установки для тушения пожара – спринклерные и дренчерные, – сразу бросаются в глаза некоторые их недостатки. К ним относят:

  • ущерб материальному имуществу;
  • большой расход воды – выше 0,08 л/с на м кв.;
  • громоздкая конструкция;
  • большой расход электроэнергии;
  • значительные затраты средств, сил и времени на ТО.

Установки пожаротушения тонкораспыленной водой (ТРВ) позволяют избежать всех этих недостатков.

Технология тушения огня тонкораспыленной водой

При ликвидации возгораний при помощи установок ТРВ в помещении создается облако из мелкодисперсных (эффективный диаметр менее 100 мкм или 0,1 мм, в отличие от обычных капель с диаметром 0,4–2,0 мм) частиц воды. Выпущенные из агрегата ПТ под определенным давлением (от 10 МПа и выше) частицы воды превращаются в водяной туман, способный проникать в самые труднодоступные места, обеспечивая, таким образом, тушение по всему объему помещения.

Мелкодисперсный водяной туман вбирает в себя твердые частицы дыма, снижая задымление в защищаемом объеме помещения.

Кроме того, практические испытания показывают, что ТРВ способна эффективно поглощать твердые частицы дыма и тушить даже электроустановки под высоким напряжением свыше 30 тыс. вольт.

Преимущества пожаротушения тонкораспыленной водой

К преимуществам тушения пожара при помощи ТРВ, в сравнении с обычными водяными АУПТ, относят следующие:

  • возможность использовать установки с ТРВ на объектах, где хранятся ценные бумажные носители информации, картины, книги и т. п.;
  • возможность использовать ТРВ для тушения электроустановок;
  • объемное тушение пожара;
  • меньший расход воды – не более 0,03 л/с на м кв.;
  • снижение задымления;
  • увеличение скорости тушения – до 1 мин.;
  • уменьшение риска повторных возгораний – мелкодисперсный туман держится в пространстве до четверти часа;
  • простой монтаж модулей пожаротушения ТРВ и независимость от внешнего энергоснабжения.

Тонкораспыленная вода так же безопасна для человека, как и обычная, однако в плане тушения пожаров, по эффективности, скорости, возможности использования на различных объектах и другим эксплуатационным характеристикам, выигрывает в несколько раз.

Модули для тушения пожаров тонкораспыленной водой

Пожаротушение тонкораспыленной водой было бы невозможно без специальных модульных установок. Это система, состоящая из узловых устройств и баллонов с ОТВ. Схематически ее можно представить следующим образом:

  • резервуар, наполненный водой, соединяется при помощи
  • рукава высокого давления с
  • газовым баллоном, который снабжается
  • ЗПУ – запорно-пусковым устройством.

В зоне защиты установлены оросители. Как только пожарный датчик сигнализирует о пожаре, срабатывает ЗПУ, открывая доступ для газа-вытеснителя. Газ через рукав подается в пожарную емкость, откуда уже смесь газа и воды по трубопроводу идет к оросителям и под давлением вытесняется в помещение.

Ассортимент модулей пожаротушения ТРВ на сегодня насчитывает множество моделей – для объектов различного назначения, размера, для тушения разных классов пожаров и т. д.

Несомненно одно – тушение пожаров тонкораспыленной водой – эффективный, надежный и безопасный метод ликвидации возгораний.

Существуют установки АУПТ, где в качестве (ОТВ) используется порошок, газ, имеющие в ряде случаев преимущества перед водой. Тем не менее по-прежнему самые распространенные стационарные системы пожаротушения – водяные.

Объяснение этому лежит на поверхности, вернее, течет из каждого водопроводного крана – доступность, низкая стоимость даже при огромных расходах, объемах на локализацию/ликвидацию , практически неограниченный или вполне достаточный для этих целей запас в наружных сетях, пожарных водоемах (резервуарах).

Он несложен:

  • После срабатывания , тепловых, извещателей пламени, а в отдельных случаях в помещениях производств, имеющих высокую категорию по взрывопожароопасной опасности, взрывозащищенных пожарных извещателей, прибор АПС подает управляющий сигнал на включение запорного механизма пускового баллона модуля тушения АУП-ТРВ.
  • Возможно также начало работы системы тушения распыленной водой с помощью , выполняющих функцию пускового устройства установки (модуля)/системы АУП-ТРВ.
  • Вытесняющий газ поступает в резервуар с ОТВ (очищенная вода, часто со специальными добавками).
  • Получившаяся огнетушащая смесь под давлением поступает в разводящий (питающий), а затем в распределительные трубопроводы, смонтированные под потолком защищаемого помещения, к оросителям, выбрасывающим смесь в виде тонкораспыленной воды, называемой часто водяным туманом, эффективно подавляющим очаг пожара.
  • Управление/контроль за выпуском ОТВ выполняется автоматически, дистанционно по показаниям сигнализатора давления смеси, установленном на питающем трубопроводе модуля установки. При превышении контрольного значения давления в резервуаре с ОТВ срабатывает предохранительный клапан (мембрана).

Модульная

Согласно пп. 3.45, 3.47 СП 5.13130 модулем называется единое устройство, в котором реализованы функции хранения/подачи ОТВ после подачи пускового сигнала, а модульной установкой тушения – несколько модулей с общей системой обнаружения очага пожара и контроля/управления их запуском.

Кроме базового исполнения – с баллоном вытесняющего газа, модульные АУП-ТРВ, так же, как и модули пожаротушения ТРВ, бывают закачного типа; когда ОТВ в изделии сразу находится под давлением и готово к применению, что сокращает инерционность срабатывания отдельного устройства и системы АУПТ в целом.

Таким оборудованием – модулями, как модульными установками/системами пожаротушения ТРВ удобно защищать небольшие по площади помещения и здания.

Автоматическая

Предназначена для поверхностного локального тушения очагов пожаров класса А, В, а также электрооборудования напряжением до 1 тыс. В.

АУП-ТРВ, по мнению как отечественных, так и зарубежных специалистов эффективна для защиты следующих объектов, отдельных важных помещений в них:

  • Жилых домов, квартир.
  • Детских садов, яслей.
  • Домов престарелых, интернатов.
  • Учреждений образования.
  • Больниц, госпиталей.
  • Гостиниц, отелей, санаториев, общежитий.
  • Промышленного кухонного оборудования.
  • Кают, машинных отделений, коридоров судов/кораблей.

Как видно из списка, это в основном жилые помещения небольшой площади и высоты с невысокой пожарной нагрузкой. Приоритет использования тонкораспыленной воды вместо спринклерных/дренчерных установок, а уж тем более порошковых, газовых, вполне понятен – это обеспечение безопасности людей.

Хотя производители ратуют за широкое использование АУП-ТРВ для тушения торговых и офисных центров, подземных автостоянок, производственных/складских помещений, кабельных тоннелей, архивов, музеев и книгохранилищ, даже объектов нефтегазового сектора промышленности (!), специалисты считают это не более чем рекламным посланием собственникам зданий/сооружений, руководству предприятий организаций.

В большинстве случаев с тушением таких объектов неплохо справляются традиционные водяные установки, а для тушения специфических особо важных помещений разработаны порошковые и газовые системы пожаротушения; а использование там АУП-ТРВ, что подтверждается расчетами – неэффективно. Чтобы понять, когда и кому необходимы системы, модули АУП-ТРВ стоит сравнить плюсы и минусы их приобретения и использования.

Достоинства и недостатки

Прежде всего о преимуществах:

  • Модули, установки АУП-ТРВ – это готовое, комплектное оборудование, которое можно быстро установить на объекте, по сравнению с монтажом, например, спринклерной системы пожаротушения.
  • За счет того, что распыляемый оросителями модулей/установок водяной туман не опасен для дыхания людей, можно вести эвакуацию из защищаемых помещений во время работы АУП-ТРВ.
  • Минимальные повреждения содержимого помещений, по сравнению с дренчерными/спринклерными и порошковыми системами пожаротушения.
  • За оборудованием модульных АУП-ТРВ необходим минимальный контроль/уход, сходный за содержанием переносных/передвижных огнетушителей, а плановое техническое обслуживание мало чем отличается от перезарядки огнетушителей.

Как водится, не обошлось и без недостатков:

  • В отличие от привычных дренчерных, спринклерных водяных АУПТ запас ОТВ, вытесняющего газа, следовательно, время работы модуля/установки тушения ТРВ ограничено. Его может не хватить для ликвидации очага пожара, в лучшем случае будет достаточно для его локализации. Хотя существуют установки с компрессорным способом подачи вытесняющего агента, но сложность системы значительно скажется на цене изделий, а также потребует дорогостоящей водоподготовки, для того, чтобы мелкие отверстия оросителей не забивались механическими примесями, минеральными осадками.
  • Высокая стоимость комплекта оборудования, чем грешат большинство отечественных производителей, не говоря о зарубежных компаниях.
  • Необходимость монтажа АПС в защищаемых помещениях, что не нужно при выборе спринклерной водяной системы.

Выводы: выбор модулей, установок пожаротушения ТРВ собственнику, руководителю защищаемого объекта стоит делать, основываясь на проектных решениях или заключении специалистов в области ПБ, а не на рекламных буклетах от производителей, нарекших такие системы пожаротушения универсальными.

В статье описаны преимущества тушения пожаров тонкораспылённой водой высокого давления перед тра­диционными способами пожаротушения. Проведена сравнительная оценка эффективности тонкораспылённой воды высокою давления, стоимости оборудовании и монтажа, а также вторичного ущерба при разных способах пожаро­тушения. Приведены данные исследований и огневых испытаний, полученные авторами статьи при моделировании различных очагов возгорания.

Разработки технологий и систем пожаротушения тонкораспылённой водой вы­сокого давления (ТРВ ВД) как стационарных, так и мобильных насчитывают более 25 лет. Соответ­ствующие установки вызывают неизменный ин­терес на выставках, однако масштабы их практи­ческого применения весьма ограничены. Связано это, с точки зрения авторов статьи, с недостаточ­ной детализацией требований, указанных в норма­тивном документе (разделы 5.4, 5.5). В 2004 г. ООО НПО «ПРОСТОР» разработал и начал вы­пускать мобильные установки с использованием ТРВ ВД (рис. 1).

Созданные пожарные стволы и форсунки позволяли организовать заброс высокоскоростной тонкораспылённой воды в зону горения с расстояния 15-20 м. Однако очевидная и прогрессив­ная технология ТРВ ВД до сих пор тиражируется преимущественно в виде мобильных и передвиж­ных агрегатов.

Доктор технических наук, профессор И. М. Абдурагимов в своих первых лекциях фактически сформулировал идею ТРВ ВД, говоря, что в идеале для тушения 1 м² твёрдого вещества требуется 0.5 л воды. Нужно только решить главную зада­чу: как с помощью небольшого объёма воды эф­фективно воздействовать на очаг горения. Первые мобильные установки пожаротушения НПО «ПРО­СТОР», имеющие запас воды 50 или даже 120 л воды (см. рис. 1), являлись своего рода огнетуши­телями для ликвидации или подавления локальных пожаров мощностью до 5 МВт. Но по-прежнему нет поддержки технологии ТРВ ВД в сфере уст­ройства стационарных, автоматических установок пожаротушения (АУП) ТРВ ВД.

В 2016 г. завершена разработка современной отечественной стационарной системы пожароту­шения ТРВ ВД, создан целый комплекс оборудо­вания, включая фирменные форсунки, средства для надежного монтажа трубопроводов, разрабо­таны руководства по проектированию, монтажу и эксплуатации, сертифицированы все компонен­ты системы и созданы необходимые внутренние нормативные документы. Тем не менее остаются те же проблемы внедрения, так как нормативная база для проектирования и внедрения систем по­жаротушения ТРВ ВД по-прежнему отсутствует, поэтому во многих случаях принимается решение в пользу традиционных спринклерных АУП.

За рубежом технологии пожаротушения ТРВ ВД активно развиваются, чему способствуют стандарт и нормы NFРА , а также активное содействие их продвижению со стороны страхо­вых компаний. К сожалению, отечественные стра­ховые компании пока не заинтересованы в стимулировании продвижения технологии ТРВ ВД или содействии принятию необходимых нормативно-­правовых документов. Поэтому приходится возвращаться к вопросам эффективности ТРВ ВД, поиску эффективной системы пожаротушения, которая может сократить вторичный ущерб от пожара практически до нуля.

Традиционные системы пожаротушения низкого рабочего давления (до 1,25 МПа) – НД.

Системы пожаротушения с рабочим давлением выше 3,5 МПа (более 5 МПа) → БД.

Все устройства подачи огнетушащего вещества (оросители, распылители, форсунки) – распылители.

Сравнение систем пожаротушения НД и ВД

Согласно классификации, указанной в законе (ч. 1, ст. 45), существуют АУП агрегатного и мо­дульного типа с распылителями НД и ВД, которые отличаются, помимо рабочего давления, расходом воды. Но данным исследователей из Финляндии, разработанный ими распылитель ВД за 30 мин «выливает» 380 л воды (давление около 10 МПа), а традиционный распылитель НД за то же время 3600 л . Примерно такие же оценки у итальян­ских производителей АУП ТРВ ВД . Обычный спринклер по сравнению с их распылителем «вы­ливает» воды в 8 раз больше. Таким образом, на­прашивается первый вывод : расход воды в системах с НД примерно к 10 раз выше, чем в системах с ВД.

Для систем с НД используются трубы (под­водящие, магистральные и распределительные) гораздо большего диаметра, чем в системах ВД. Также важен и сам материал, из которого изготавливаются трубы. Если в системах НД можно ис­пользовать иногда даже не оцинкованную чёрную трубу (что, конечно, неправильно), то для систем ВД обязательно наличие только нержавеющей и, желательно, отечественной трубы. По приблизи­тельной оценке, учитывая, что примерно 2/3 всего распределительного трубопровода АУП (для систем ВД) составляют распределительные линии мало­го диаметра, погонный метр нержавеющей трубы почти в 2 раза дороже, хотя распределительный трубопровод из нержавеющей стали в 4 раза лег­че. Второй вывод : с учётом труб большого диаметра подводящие, магистральные и распределительные трубопроводы в системах пожаротушения НД по сравнению с линиями ВД более чем в 6 раз тяжелее, но при этом по стоимости примерно в 2 раза дешевле.

Третий вывод : для систем пожаротушения НД необходим значительно больший запас воды и, соответственно, более мощные нагнетательно-распределительные системы. Отличие может быть даже больше чем в 10 раз, так как всё зависит от нормативных требований по продолжительно­сти подачи воды системой .

В работе по материалам зарубежных публикаций были сделаны сравнительные оценки (рис. 2). Если принять за исходное условие усред­нённую спринклерную систему НД, то в ней при­мерно поровну распределены масса оборудования и необходимый запас воды.

Общая масса всей системы пожаротушения ВД с рабочим давлением 10 - 15 МПа составляет только 15 % от массы системы пожаротушения НД. В самой установке пожаротушения ВД соотноше­ние массы воды, необходимой для пожаротушения, к массе оборудования, примерно равно 1:10.

Если сравнивать обе установки по массе оборудования и трубопроводов, то соотноше­ние будет примерно 4:1, а с учётом запаса воды – примерно 7:1 не в пользу систем НД. Четвертый вывод : объёмы и масса монтируемого оборудо­вания и, соответственно, затраты на монтаж си­стем пожаротушения НД в разы превышают за­траты при монтаже систем пожаротушения ВД. При этом более компактные системы пожаро­тушения ВД значительно проще в обслуживании и эксплуатации.


Оценки и сравнения, сделанные на основе рассмотрения конструктивных, архитектурно-планировочных и компоновочных решений ЛУП, не будут полными без сравнения основных элементов этой системы – распылителей, задача которых распределить истекающие потоки воды на мак­симально возможную площадь. В распылителях НД эту функцию выполняют дополнительные конструктивные элементы, устанавливаемые на выходе струи из распылителя (рис. 3).

Распылители ВД, благодаря появлению но­вых технологий и материалов, изобретены сравни­тельно недавно. По конструкции это либо несколько струйных сопел, расположенных под углом (рис. 4, а), либо специальные вихревые форсунки или распы­лители (рис. 4, б).

Сравнительная оценка размеров частиц воды в рас­пылителях НД и ВД

Главное отличие распылителей НД и ВД в размерах частиц воды, которые формируются на выходе из распылителя (см. рис. 3, 4). В распылителях ВД при давлении от 7-12 МПа это, прежде всего, мелкодисперсный поток водя­ных капель размером менее 150 мкм, фактически - от 50 до 100 мкм. Разработчики систем пожаро­тушения НД оперируют средним размером капель 2 мм, сравнивая их с каплями 0,05 мм в систе­мах ВД .

Если теоретически распылить 1 л воды на равномерные частицы размером 2 и 0,05 мм, то получится следующее количество капель: 240 000 и 15 300 000 000. Так как испарение воды проис­ходит с поверхности, то интенсивность испарения при пожаротушении больше зависит не от количества капель, а от их суммарной свободной поверх­ности. Суммарная боковая поверхность для частиц воды НД и ВД равна 3 и 120 м², соответственно, т. е. возрастает в 40 раз. Таким образом, огромное количество капель и увеличенная в десятки раз поверхность испарения в системах пожаротуше­ния ТРВ ВД значительно повышает скорость по­глощения тепла в зоне горения и интенсивность вытеснения из неё кислорода, а также активно экранирует тепловое излучение

Скорость истечения воды из распылителя ВД

Данный параметр для подобного устройства весь­ма важен: чем выше давление в системе, тем выше скорость истечения. При скорости истечения, превышающей 100-150 м/с, следует учитывать до­полнительный мощный аэродинамический фактор дробления водяного потока, чего нет при гравитационном истечении в случае распылителей НД, т. е. в итоге получается быстролетящий туман. Мел­кие частицы воды, обладающие хорошей проницаемостью, способствуют распределению ТРВ по всему пространству, даже «затекая» за препятствия, напоминая по характеру распределения в пространстве газ (квазигаз). Такая способность летящего тумана больше соответствует объёмному способу тушения пожара. В совокупности все перечис­ленные свойства и особенности систем пожаро­тушения ТРВ ВД позволяют говорить о том, что они способны составить серьёзную конкуренцию не только традиционным системам распыления воды НД, но в ряде случаев и газовым системам пожаротушения.

Преимущества от использования водяного тумана при тушении пожара

  • эффективно осуществляет дымоподавление (дымоосаждение);
  • мелкодисперсная вода экранирует тепловое излу­чение и может использоваться для защиты пожарного, а также материальных ценностей на пожаре;
  • распылённая вода более равномерно охлаждает сильно нагретые металлические поверхности несущих конструкций, что исключает их локальную деформацию, потерю устойчиво­сти и разрушение;
  • низкая электрическая проводимость водяного тума­на делает возможным его применение в качестве эффективного средства пожаротушения на электроустановках, находящихся под напряжением.

Особенно эффективным является применение систем пожаротушения ТРВ ВД на ранних стадиях обнаружения пожара, в замкнутых поме­щениях, а также на объектах, не допускающих вто­ричного ущерба от пожара (избыточный пролив воды). В соответствии с рекомендациями международного и европейского стандартов , ис­следованиями зарубежных коллег , а также из накопленного опыта наиболее эффективно ис­пользовать ТРВ ВД для тушения пожаров класса A, В и E в следующих местах:

  • в кабельных сооружениях электростанций (АЭС) и подстанций, промышленных и обще­ственных зданий (тоннели, каналы, подвалы, шахты, этажи, двойные полы, галереи, камеры, используе­мые для прокладки электрокабелей);
  • в городских кабельных коллекторах и тоннелях;
  • в электроустановках, находящихся под на­пряжением до 35000 В;
  • в помещениях для хранения горючих ма­териалов или негорючих материалов в горючей упаковке;
  • в наземных и подземных помещениях и сооружениях метрополитенов и подземных ско­ростных трамваях;
  • в автотранспортных тоннелях;
  • в помещениях складского назначения;
  • в помещениях хранилищ библиотек и архивов.

Авторы статьи признают, что для многих объектов жилого и общественного назначения вполне достаточно использовать традиционные системы пожаротушения НД и проблема их не­достаточной эффективности (не выше 50-60 %) относится, скорее всего, к упущениям в проекти­ровании, монтаже и особенно в обслуживании. Системы пожаротушения ИД ориентированы на лик­видацию пожара в помещении (здании) до возникновения критических значений опасных факторов пожара . При этом следует отметить, что в соот­ветствии со статьей 89 закона расчёт эвакуационных путей и выходов людей производится без учёта применяемых средств пожаротушения, что занижает значимость и эффективность АУП. Следует отметить, что традиционные спринклер­ные ЛУП неэффективны при ликвидации пожара до наступления предела огнестойкости строитель­ных конструкций, до причинения максимально допустимого ущерба защищаемому имуществу и до наступления опасности разрушения технологи­ческих установок . ТРВ ВД лучше использовать в качестве средства объёмного или локально объёмного пожаротушения, что пока не вписыва­ется в способы, указанные в нормативном доку­менте , но такие системы (ТРВ ВД) позволяют обеспечить достижение тех результатов, которые не могут обеспечить спринклерные автоматиче­ские установки пожаротушения .

Системы пожаротушения НД сохраняют ве­дущую роль в системах противопожарной зашиты из-за развитой нормативной правовой базы, отра­ботанных проектных и технологических решений, сформировавшегося положительного отношения страховых компаний.

Системы пожаротушения тонкораспылённой водой высокого давления после создания высоко­эффективных распылителей и форсунок ТРВ ВД на основе новых технологий, инструментария и материалов, экспериментально показывают свои существенно более высокие потенциальные воз­можности и эффективность. Однако низкие темпы формирования нормативной и расчётно-аналити­ческой базы для их применения являются серьёз­ным сдерживающим фактором для перехода на их широкое использование.

ЛИТЕРАТУРА

1. СП 5.13130.2009. Системы противопожарной защиты. Установки пожарной сигнализации и пожаротушения автома­тические. Нормы и правила проектирования. - М.: МЧС России, ВНИИПО МЧС России. 2009. - 114 с.

2. Федеральный закон от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасно­сти». - М.: Проспект. 2014. - 111 с.

3. Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений». - М., 2009. - 20 с.

4. ONR CEN/TS 14972:2011. Ortsfeste Brandbekampfungsanlagen – Feinspruh Loschanlagen // Planung und Einbau; Deutsche Fassung, Belgium, Brussel, Europaisches Komitee fur Normung, 2011, S. 9.

5. NFPA 750. Standart on Water Mist Fire Protection Systems. – Las Vegas, An International Codes and Standarts Organization, National Fire Protection Association, 2015, 88 p.

6. Гергель В. И., Цариченко С. Г., Поляков Д. В. Пожаро­тушение тонкораспылённой водой установками высокого дав­ления оперативного применения // Пожарная безопасность. - 2006. - № 2. - С. 125-132.

7. Противопожарная защита для офисных зданий [Элек­тронный ресурс] // Каталог фирмы MARIOFF CORPORATION. Режим доступа: http://www.marioff.com/fire-protection/fire-protection-for-buildings/fire-protection-for-office-buil...

8. Модуль пожаротушении тонкораспылённой водой ЕI-МISТ [Электронный ресурс] // Официальный сайт компа­нии ООО «Пламя Е1» (Пожарная безопасность и оборудова­ние) [сайт]. Режим доступа: http://www.plamya-ei.ru/produkcija/ei-mist (Дата обращения 24.05.2017 г.).

9. Пахомов В. П. Особенности применения АУПТ тонкораспылённой воды // Пожарное дело в строительстве. - 2009. - № 5. - С. 59-65.

10. НПБ 88-01. Установки пожаротушения и сигнализа­ции. Нормы и правила проектирования. - М.: МВД РФ, Государ­ственная противопожарная служба, 2002. - 119 с.

  • модули тонкораспыленной объемом от 60 до 160 литров;
  • специальные дренчерные распылители двух типоразмеров;
  • система трубопроводов;
  • система автоматики.

Модуль может содержать в своем составе баллон и запорно-пусковое устройство (далее ЗПУ). ЗПУ оборудовано манометром, сигнализатором давления, мембранным предохранительным устройством (МПУ), электромагнитным пусковым клапаном, устройством ручного пуска и блокировкой ручного пуска (чека) имеющей пломбу.

Способ хранения огнетушащего вещества и газа-вытеснителя может быть совместным и раздельным. В первом случае модуль заполняется ОТВ до определенного уровня (не полностью) и дополнительно заправляется газом-вытеснителем до определенного давления, во втором – ОТВ и газ-вытеснитель хранятся в разных модулях и лишь в момент пуска газ-вытеснитель поступает в модули с ОТВ и приводит МУПТВ в действие.


Установка может состоять как из одного модуля, так и из нескольких, объединенных в батарею до 10 шт. Таких батарей может быть несколько в зависимости от защищаемой площади и времени её работы. При использовании нескольких модулей выделяется пусковой баллон, который имеет электроклапан для пуска. Остальные баллоны запускаются по пневматическим трубкам. Средняя продолжительность подачи ОТВ составляет 1,5-2 минуты. Установка имеет возможность подачи ОТВ в течении большего времени чем 2 минуты. В этом случае заказчик с проектной организацией определяют время подачи ОТВ.


Распылители имеют специальную конструкцию, позволяющую распылять ОТВ с диаметром капель менее 150 мкм, при этом различные типоразмеры обеспечивают разную интенсивность орошения. Рациональное применение модульных установок может осуществляться в защищаемых помещениях площадью до 100 м2.

Установка пожаротушения тонкораспыленной водой высокого давления

Автоматическая установка пожаротушения тонкораспыленной водой высокого давления, как правило, состоит из следующих основных компонентов:

  • насосная станция высокого давления с рабочими и резервным насосами, щитом управления, устанавливаемыми на единой опорной платформе;
  • резервуары с дистиллированной водой, в соответствии с расчетным объемом;
  • распределительные устройства с ручным и электрическим приводом для подачи воды к насадкам в различных зонах;
  • специальные дренчерные или спринклерные распылители;
  • трубопроводы и специальные соединительные устройства.
Автоматическая установка пожаротушения высокого давления может состоять из нескольких секций (по количеству направлений). Насосный узел с резервуарами должен располагаться в помещении насосной станции. В дежурном режиме трубопроводы до оросителей заполняются водой под давлением 15 бар. При возникновении пожара и вскрытии термозамков одного или нескольких спринклерных распылителей (температура вскрытия термозамка может варьироваться) происходит падение давления в системе, что фиксируется зоновым реле давления, сигнал от которого включает жокей-насос. Насос восстанавливает давление до 15 бар. При продолжении падения давления в течение 10 секунд работа жокей-насоса прекращается и включается первый высоконапорный насос. Если понижение давления продолжается, то включается второй насос. В случае невыхода на рабочий режим одного из основных насосов включается резервный. Минимальное рабочее давление перед выпускными распылителями при тушении пожара должно составлять 80 бар. При срабатывании установки, сигнал о начале ее работы, при помощи реле давления и датчика потока жидкости, поступает на централизованный пульт, а также на звуковое и световое оповещение. На коллекторе, обеспечивающем питание защищаемой зоны, устанавливается отсечной шаровой клапан и зоновый датчик потока жидкости, сигнал от которого поступает на контрольно-пусковой прибор, а также клапан регулировки давления, который сбрасывает излишки воды в резервуар. Рядом с наиболее удаленным оросителем устанавливается датчик давления. Выключение насосов производится кнопкой на шкафу управления в насосной станции.

В системах пожаротушения высокого давленияне используются химические добавки, и в связи с этим установка является экологически безопасной. Насосная станция пожаротушения должна соответствовать требованиям СП5.13130.2009.

В помещении насосной станции должны располагаться насосный узел, резервуары для воды с расчетным объемом (вертикального исполнения) и коллектор на требуемое количество направлений с распределительными клапанами. Насосный узел состоит из нескольких рабочих высоконапорных насосов и одного резервного, установленного на общей опорной раме. Также на опорной раме устанавливается щит управления. Вода направляется насосом через обратный клапан в общий коллектор насосного узла. Коллектор насосного узла укомплектован всеми необходимыми соединениями, реле давления, манометрами, аккумуляторами, предохранительным клапаном, и клапаном регулировки давления. Насосный узел соединен с резервуарами, установленными в помещении насосной станции и подключенными к системе водоснабжения объекта. Уровень воды в резервуаре контролируется дистанционно, электрическим датчиком и визуально - индикатором уровня. Когда уровень воды приближается к минимальному, электрический датчик подает сигнал о неисправности на контрольно-приемный пункт, который, в свою очередь, обеспечит восстановление уровня воды, благодаря открытию электрического клапана, установленного на резервуаре. Каждый резервуар укомплектован электроклапанами, фильтром, отсечным шаровым клапаном, дренажным клапаном.
На магистральном трубопроводе, выходящем из коллектора в каждую защищаемую зону устанавливается зоновый датчик потока, его сигнал немедленно поступает на контрольно-приемный пульт. Сигналы о пожаре (срабатывании), а также о состоянии установки пожаротушения дублируются на контрольной панели в помещении охраны. Управление другими инженерными системами при срабатывании предусматривается командными импульсами с блоков управления установки пожаротушения и пожарной сигнализации.

Применение подобных установок позволяет организовать пожаротушение достаточно больших размеров, площадью более 2000 м 2 на нескольких направлениях.


Top