Рентгеновские лучи в медицине, применение. Рентгеновские лучи

Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов - частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром. В спектре присутствуют ярко выраженные компоненты, как это показано на рис. 1.

Рис. 1. ОБЫЧНЫЙ РЕНТГЕНОВСКИЙ СПЕКТР состоит из непрерывного спектра (континуума) и характеристических линий (острые пики). Линии Кia и Кib возникают вследствие взаимодействий ускоренных электронов с электронами внутренней К-оболочки.

Широкий «континуум» называют непрерывным спектром или белым излучением. Налагающиеся на него острые пики называются характеристическими рентгеновскими линиями испускания. Хотя весь спектр есть результат столкновений электронов с веществом, механизмы возникновения его широкой части и линий разные. Вещество состоит из большого числа атомов, каждый из которых имеет ядро, окруженное электронными оболочками, причем каждый электрон в оболочке атома данного элемента занимает некоторый дискретный уровень энергии. Обычно эти оболочки, или энергетические уровни, обозначают символами K, L, M и т.д., начиная от ближайшей к ядру оболочки. Когда налетающий электрон, обладающий достаточно большой энергией, соударяется с одним из связанных с атомом электронов, он выбивает этот электрон с его оболочки. Опустевшее место занимает другой электрон с оболочки, которой соответствует большая энергия. Этот последний отдает избыток энергии, испуская рентгеновский фотон. Поскольку электроны оболочек имеют дискретные значения энергии, возникающие рентгеновские фотоны тоже обладают дискретным спектром. Этому соответствуют острые пики для определенных длин волн, конкретные значения которых зависят от элемента-мишени. Характеристические линии образуют K-, L- и M-серии, в зависимости от того, с какой оболочки (K, L или M) был удален электрон. Соотношение между длиной волны рентгеновского излучения и атомным номером называется законом Мозли (рис. 2).

Рис. 2. ДЛИНА ВОЛНЫ ХАРАКТЕРИСТИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ, испускаемого химическими элементами, зависит от атомного номера элемента. Кривая соответствует закону Мозли: чем больше атомный номер элемента, тем меньше длина волны характеристической линии.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, бльшая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем (рис. 3), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Рис. 3. РЕНТГЕНОВСКАЯ ТРУБКА КУЛИДЖА. При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 - электронный пучок; 2 - катод с фокусирующим электродом; 3 - стеклянная оболочка (трубка); 4 - вольфрамовая мишень (антикатод); 5 - нить накала катода; 6 - реально облучаемая площадь; 7 - эффективное фокальное пятно; 8 - медный анод; 9 - окно; 10 - рассеянное рентгеновское излучение.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку бульшая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Рентгеновское излучение — разновидность высокоэнергетического электромагнитного излучения. Оно активно используется в различных отраслях медицины.

Рентгеновские лучи представляют собой электромагнитные волны, энергия фотонов которых на шкале электромагнитных волн находится между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до ~1 МэВ), что соответствует длинам волн от ~10^3 до ~10^−2 ангстрем (от ~10^−7 до ~10^−12 м). То есть это несравнимо более жесткое излучение, чем видимый свет, который находится на этой шкале между ультрафиолетом и инфракрасными («тепловыми») лучами.

Граница между рентгеном и гамма-излучением выделяется условно: их диапазоны пересекаются, гамма-лучи могут иметь энергию от 1 кэв. Различаются они по происхождению: гамма-лучи испускаются в ходе процессов, происходящих в атомных ядрах, рентгеновские же — при процессах, идущих с участием электронов (как свободных, так и находящихся в электронных оболочках атомов). При этом по самому фотону невозможно установить, в ходе какого процесса он возник, то есть деление на рентгеновский и гамма-диапазон во многом условно.

Рентгеновский диапазон делят на «мягкий рентген» и «жесткий». Граница между ними пролегает на уровне длины волны 2 ангстрема и 6 кэв энергии.

Генератор рентгеновского излучения представляет собой трубку, в которой создан вакуум. Там расположены электроды — катод, на который подается отрицательный заряд, и положительно заряженный анод. Напряжение между ними составляет десятки-сотни киловольт. Генерация рентгеновских фотонов происходит тогда, когда электроны «срываются» с катода и с высочайшей скоростью врезаются в поверхность анода. Возникающее при этом рентгеновское излучение называется «тормозным», его фотоны имеют различную длину волны.

Одновременно происходит генерация фотонов характеристического спектра. Часть электронов в атомах вещества анода возбуждается, то есть переходит на более высокие орбиты, а потом возвращается в нормальное состояние, излучая фотоны определенной длины волны. В стандартном генераторе возникают оба типа рентгеновского излучения.

История открытия

8 ноября 1895 года немецкий ученый Вильгельм Конрад Рентген обнаружил, что некоторые вещества под воздействием «катодных лучей», то есть потока электронов, генерируемого катодно-лучевой трубкой, начинают светиться. Он объяснил это явление воздействием неких X-лучей — так («икс-лучи») это излучение и сейчас называется на многих языках. Позже В.К. Рентген изучил открытое им явление. 22 декабря 1895 года он сделал доклад на эту тему в Вюрцбургском университете.

Позже выяснилось, что рентгеновское излучение наблюдалось и ранее, но тогда связанным с ним феноменам не придали большого значения. Катодно-лучевая трубка была изобретена уже давно, но до В.К. Рентгена никто не обращал особого внимания на почернение фотопластинок вблизи нее и т.п. явления. Неизвестна была и опасность, исходящая от проникающей радиации.

Виды и их влияние на организм

«Рентген» — самый мягкий тип проникающей радиации. Избыточное воздействие мягкого рентгена напоминает влияние ультрафиолетового облучения, но в более тяжелой форме. На коже образуется ожог, но поражение оказывается более глубоким, а заживает он намного медленнее.

Жесткий рентген представляет собой полноценную ионизирующую радиацию, способную привести к лучевой болезни. Рентгеновские кванты могут разрывать молекулы белков, из которых состоят ткани человеческого тела, а также молекулы ДНК генома. Но даже если рентгеновский квант разбивает молекулу воды, все равно: при этом образуются химически активные свободные радикалы H и OH, которые сами способны воздействовать на белки и ДНК. Лучевая болезнь протекает в тем более тяжелой форме, чем больше поражаются органы кроветворения.

Рентгеновские лучи обладают мутагенной и канцерогенной активностью. Это значит, что вероятность спонтанных мутаций в клетках при облучении возрастает, а иногда здоровые клетки могут перерождаться в раковые. Повышение вероятности появления злокачественных опухолей — стандартное следствие любого облучения, в том числе рентгеновского. Рентген является наименее опасным видом проникающей радиации, но он все равно может быть опасен.

Рентгеновское излучение: применение и как работает

Рентгеновское излучение применяется в медицине, а также в других сферах человеческой деятельности.

Рентгеноскопия и компьютерная томография

Наиболее частое применение рентгеновского излучения — рентгеноскопия. «Просвечивание» человеческого тела позволяет получить детальное изображение как костей (они видны наиболее четко), так и изображения внутренних органов.

Различная прозрачность тканей тела в рентгеновских лучах связана с их химическим составом. Особенности строения костей в том, что они содержат много кальция и фосфора. Другие же ткани состоят в основном из углерода, водорода, кислорода и азота. Атом фосфора превосходит по весу атом кислорода почти вдвое, а атом кальция — в 2,5 раза (углерод, азот и водород — еще легче кислорода). В связи с этим поглощение рентгеновских фотонов в костях оказывается намного выше.

Помимо двухмерных «снимков» рентгенография дает возможность создать трехмерное изображение органа: эта разновидность рентгенографии называется компьютерной томографией. Для этих целей применяется мягкий рентген. Объем облучения, полученный при одном снимке, невелик: он примерно равен облучению, получаемому при 2-часовом полете на самолете на высоте 10 км.

Рентгеновская дефектоскопия позволяет выявлять мелкие внутренние дефекты в изделиях. Для нее используется жесткий рентген, так как многие материалы (металл например) плохо «просвечиваются» из-за высокой атомной массы составляющего их вещества.

Рентгеноструктурный и рентгенофлуоресцентный анализ

У рентгеновских лучей свойства позволяют с их помощью детально рассматривать отдельные атомы. Рентгеноструктурный анализ активно применяется в химии (в том числе биохимии) и кристаллографии. Принцип его работы — дифракционное рассеивание рентгеновских лучей на атомах кристаллов или сложных молекул. При помощи рентгеноструктурного анализа была определена структура молекулы ДНК.

Рентгенофлуоресцентный анализ позволяет быстро определить химический состав вещества.

Существует множество форм радиотерапии, но все они подразумевают использование ионизирующей радиации. Радиотерапия делится на 2 типа: корпускулярный и волновой. Корпускулярный использует потоки альфа-частиц (ядер атомов гелия), бета-частиц (электронов), нейтронов, протонов, тяжелых ионов. Волновой использует лучи электромагнитного спектра — рентгеновские и гамма.

Используются радиотерапевтические методы прежде всего для лечения онкологических заболеваний. Дело в том, что радиация поражает в первую очередь активно делящиеся клетки, поэтому так страдают органы кроветворения (их клетки постоянно делятся, производя все новые эритроциты). Раковые клетки тоже постоянно делятся и более уязвимы для радиации, чем здоровая ткань.

Используется уровень облучения, который подавляет активность раковых клеток, умеренно влияя на здоровые. Под воздействием радиации происходит не разрушение клеток как таковое, а поражение их генома — молекул ДНК. Клетка с разрушенным геномом может некоторое время существовать, но уже не может делиться, то есть рост опухоли прекращается.

Рентгенотерапия — наиболее мягкая форма радиотерапии. Волновая радиация мягче корпускулярной, а рентген — мягче гамма-излучения.

При беременности

Использовать ионизирующую радиацию при беременности опасно. Рентгеновские лучи обладают мутагенной активностью и могут вызвать нарушения у плода. Рентгенотерапия несовместима с беременностью: она может применяться только в том случае, если уже решено производить аборт. Ограничения на рентгеноскопию мягче, но в первые месяцы она тоже строго запрещена.

В случае крайней необходимости рентгенологическое исследование заменяют магниторезонансной томографией. Но в первый триместр стараются избегать и ее (этот метод появился недавно, и с абсолютной уверенностью говорить об отсутствии вредных последствий).

Однозначная опасность возникает при облучении суммарной дозой не менее 1 мЗв (в старых единицах — 100 мР). При простом рентгеновском снимке (например, при прохождении флюорографии) пациентка получает примерно в 50 раз меньше. Для того, чтобы получить такую дозу за 1 раз, нужно подвергнуться детальной компьютерной томографии.

То есть сам по себе факт 1-2-кратного «рентгена» на ранней стадии беременности не грозит тяжелыми последствиями (но лучше не рисковать).

Лечение с помощью него

Рентгеновские лучи применяют прежде всего при борьбе со злокачественными опухолями. Этот метод хорош тем, что высокоэффективен: он убивает опухоль. Плох он тем, что здоровым тканям приходится немногим лучше, имеются многочисленные побочные эффекты. В особой опасности находятся органы кроветворения.

На практике применяются различные методы, позволяющие снизить воздействие рентгена на здоровые ткани. Лучи направляются под углом таким образом, чтобы в зоне их перекрещивания оказалась опухоль (благодаря этому основное поглощение энергии происходит как раз там). Иногда процедура производится в движении: тело пациента относительно источника излучения вращается вокруг оси, проходящей через опухоль. При этом здоровые ткани оказываются в зоне облучения лишь иногда, а больные — постоянно.

Рентген используется при лечении некоторых артрозов и подобных заболеваний, а также кожных болезней. При этом болевой синдром снижается на 50-90%. Так как излучение при этом используется более мягкое, побочных эффектов, аналогичных тем, что возникают при лечении опухолей, не наблюдается.

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Получение рентгеновского излучения

Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов - частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем (рис. 11), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры.

Рис. 11.

Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 - электронный пучок; 2 - катод с фокусирующим электродом; 3 - стеклянная оболочка (трубка); 4 - вольфрамовая мишень (антикатод); 5 - нить накала катода; 6 - реально облучаемая площадь; 7 - эффективное фокальное пятно; 8 - медный анод; 9 - окно; 10 - рассеянное рентгеновское излучение.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку бульшая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74. Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

В 1895 немецкий физик Рентген , проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.

Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.

Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.

Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.

Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.

Возникновение и свойства рентгеновского излучения

Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).

Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.

При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см . рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 10 14 –10 15 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.

Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b , при этом интенсивность b -составляющей в 5 раз меньше, чем a . В свою очередь a -составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).

Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a -частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g -излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.

Взаимодействие рентгеновских лучей с кристаллами

При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.

Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a 0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:

а (a a 0) = h l ,

где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.

При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.

Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.

Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга2d sinq = nl , где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.

Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.

Рентгеноанализ в науке и технике

С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.

Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.

В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.

У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.

По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).

С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).

При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.

При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.

Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.

В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.

После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.


Top